
Introduction to I/O Efficient Algorithms
(External Memory Model)

Jeff M. Phillips

August 30, 2013



Von Neumann Architecture

Model:

I CPU and Memory

I Read, Write, Operations
(+, −, ∗, . . .) constant
time

I polynomially equivalent to
Turing Machine

RAM

CPU



Memory as Disk

Reality:

I CPU and Memory

I CPU Operations (+, −, ∗,
. . .) constant time

I Read, Write not constant
time (at least starting in
1980s).

Disk

CPU

read/write head



Cache

I through 1970s: cache
access similar to memory
access

I First commercially
available 1982 (CP/M
operating system)

I SmartDrive in Microsoft
MS-DOS in 1988

Disk

CPU

read/write head

RAM



Memory Hierarchy

I 1980s -→ 1990s Hierarchy
expanded

I 1989: 486 processor has
L1 Cache in CPU
had L2 off CPU on
motherboard

I L2 popular as
motherboard speed rose

Disk

CPU

read/write head

RAM

L2

L1

fasterbi
gg

er

4 MB

2 GB

164 GB



Block Transfer

I Disk access is faster
sequential: (B = 8-16KB)

I Sends whole block to
RAM (size B).

I RAM has size M > B2.

I Disk access is 106 more
expensive than RAM
access.

I Each block transfer is 1
I/O.

I Bound number of I/Os.

Disk

CPU

read/write head

RAM

block transfer



Block Transfer

The difference in time between modern CPU and disk technologies
is analogous to the difference in speed in sharpening a pencil using
a sharpener on one’s desk or by taking an airplane to the other side
of the world and using a sharpener on someone else’s desk.
- (Douglas Comer)



Scalability

Disk

CPU

read/write head

RAM

block transfer

I Most programs developed in
RAM model.

I Why don’t they always
thrash?

ru
nt

im
e

data size

I Sophisticated OS shifts
blocks under the hood
(paging and prefetching).

I Massive data and scattered
access still spells doom.



Scalability

Disk

CPU

read/write head

RAM

block transfer

I Most programs developed in
RAM model.

I Why don’t they always
thrash?

ru
nt

im
e

data size

I Sophisticated OS shifts
blocks under the hood
(paging and prefetching).

I Massive data and scattered
access still spells doom.



Scalability

Disk

CPU

read/write head

RAM

block transfer

I Most programs developed in
RAM model.

I Why don’t they always
thrash?

ru
nt

im
e

data size

I Sophisticated OS shifts
blocks under the hood
(paging and prefetching).

I Massive data and scattered
access still spells doom.



External Memory Model

D

P

M

block I/O

I N = size of problem
instance

I B = size of disk block

I M = number of items
that fits in Memory

I T = number of items in
output

I I/O = block move
between Memory and Disk

[Aggarwal and Vitter ’88]
[Floyd ’72]



Fundamental Bounds

Internal External
Scanning: O(N)

O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)

Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N)

O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N)

O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})

Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N)

O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(N log N) O((N/B) logM/B(N/B))

Permuting: O(N) O(min{N, (N/B) logM/B(N/B)})
Searching: O(log2 N) O(logB N)

I Linear I/O: O(N/B)

I Permuting not linear

I Permuting and sorting equal (practically)

I B factor very important N
B < N

B logM/B
N
B � N

I Cannot sort optimally with search tree



Difference Between N and N/B

Consider traversing a linked list.

I Naive: O(N) blocks, each hop to new block.

I Smart: O(N/B) blocks, if sequential nodes in single block.

Example: N = 256× 106, B = 8000, 1ms disk access time

I N I/Os takes 256× 103 sec = 4266 min = 71 hours

I N/B I/Os takes 256/8 sec = 32 sec



Difference Between N and N/B

Consider traversing a linked list.

I Naive: O(N) blocks, each hop to new block.

I Smart: O(N/B) blocks, if sequential nodes in single block.

Example: N = 256× 106, B = 8000, 1ms disk access time

I N I/Os takes 256× 103 sec = 4266 min = 71 hours

I N/B I/Os takes 256/8 sec = 32 sec



TPIE

Templated Portable I/O Environment
Open source library of I/O-Efficient data structures.

I External memory merge sort

I B-Tree

I Priority queue

I Simple buffered stacks and queues

http://www.madalgo.au.dk/tpie/

http://www.madalgo.au.dk/tpie/


Attribution

These slides are heavily based on slides by Lars Arge
(a leading expert in the area of External Memory algorithms).
See: http://www.daimi.au.dk/~large/ioS09/

http://www.daimi.au.dk/~large/ioS09/

