Introduction to I/O Efficient Algorithms
(External Memory Model)

Jeff M. Phillips

August 30, 2013

Von Neumann Architecture

Model:
» CPU and Memory

» Read, Write, Operations
(+, —, *, ...) constant
time

» polynomially equivalent to
Turing Machine

RAM

N

CPU

Memory as Disk

read/write head

Reality:
» CPU and Memory
» CPU Operations (+, —, *,
...) constant time

» Read, Write not constant

time (at least starting in
1980s).

N

CPU

Cache

read/write head

» through 1970s: cache
access similar to memory
access

» First commercially
available 1982 (CP/M
operating system) I

» SmartDrive in Microsoft RAM

MS-DOS in 1988
AN

Memory Hierarchy

» 1980s -— 1990s Hierarchy
expanded

> 1989: 486 processor has
L1 Cache in CPU
had L2 off CPU on
motherboard

> L2 popular as
motherboard speed rose

bigger

read/write head

2ce RAM
’

4 MB |2
’
L1

19158}

Block Transfer

read/write head

» Disk access is faster
sequential: (B = 8-16KB)

» Sends whole block to
RAM (size B).

» RAM has size M > B2,

» Disk access is 108 more
expensive than RAM
access.

» Each block transfer is 1 RAM \|—|

1/0.
» Bound number of 1/Os. I
INZED

Ibloc transfer

Block Transfer

The difference in time between modern CPU and disk technologies
is analogous to the difference in speed in sharpening a pencil using
a sharpener on one’s desk or by taking an airplane to the other side
of the world and using a sharpener on someone else’s desk.

- (Douglas Comer)

Scalability

» Most programs developed in
read/write head RAM model.

» Why don't they always
thrash?

runtime

\

data size

RAM

N fry

Scalability

read/write head

Ibloc transfer

RAM

V3

» Most programs developed in
RAM model.

» Why don't they always
thrash?

runtime

\

data size

» Sophisticated OS shifts
blocks under the hood
(paging and prefetching).

Scalability

read/write head

RAM

N fry

Most programs developed in
RAM model.

Why don't they always
thrash?

runtime

data size

Sophisticated OS shifts
blocks under the hood
(paging and prefetching).
Massive data and scattered
access still spells doom.

\

External Memory Model

black 1/0

M X

WV

v

N = size of problem
instance

» B = size of disk block

» M = number of items
that fits in Memory

» T = number of items in
output

» |/O = block move
between Memory and Disk

[Aggarwal and Vitter '88]
[Floyd '72]

Fundamental Bounds

Internal External
Scanning: O(N)

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N)

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N) O((N/B)logp,8(N/B))

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N) O((N/B)logp,8(N/B))

Permuting: O(N)

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N) O((N/B)logp,8(N/B))

Permuting: O(N) O(min{N, (N/B)logp,5(N/B)})

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N) O((N/B)logp,8(N/B))

Permuting: O(N) O(min{N, (N/B)logp,5(N/B)})
Searching: O(log, N)

Fundamental Bounds

Internal External
Scanning: O(N) O(N/B)
Sorting: O(Nlog N) O((N/B)logp,8(N/B))
Permuting: O(N) O(min{N, (N/B)logp,5(N/B)})
Searching: O(log, N) O(logg N)

v

Linear 1/0: O(N/B)

Permuting not linear

v

v

Permuting and sorting equal (practically)

v

B factor very important % < % log /s % < N

v

Cannot sort optimally with search tree

Difference Between N and N/B

Consider traversing a linked list.

» Naive: O(N) blocks, each hop to new block.
» Smart: O(N/B) blocks, if sequential nodes in single block.

Difference Between N and N/B

Consider traversing a linked list.

» Naive: O(N) blocks, each hop to new block.
» Smart: O(N/B) blocks, if sequential nodes in single block.

Example: N = 256 x 10°, B = 8000, 1ms disk access time
» N 1/Os takes 256 x 103 sec = 4266 min = 71 hours
» N/B 1/Os takes 256/8 sec = 32 sec

TPIE

Templated Portable 1/0O Environment
Open source library of 1/O-Efficient data structures.

» External memory merge sort
> B-Tree
» Priority queue

» Simple buffered stacks and queues

http://www.madalgo.au.dk/tpie/

http://www.madalgo.au.dk/tpie/

Attribution

These slides are heavily based on slides by Lars Arge
(a leading expert in the area of External Memory algorithms).
See: http://www.daimi.au.dk/~large/ioS09/

http://www.daimi.au.dk/~large/ioS09/

