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Abstract
Anomaly detection has important applications in bio-
surveilance and environmental monitoring. When compar-
ing measured data to data drawn from a baseline distribu-
tion, merely, finding clusters in the measured data may not
actually represent true anomalies. These clusters may likely
be the clusters of the baseline distribution. Hence, a discrep-
ancy function is often used to examine how different mea-
sured data is to baseline data within a region. An anomalous
region is thus defined to be one with high discrepancy.

In this paper, we present algorithms for maximizing sta-
tistical discrepancy functions over the space of axis-parallel
rectangles. We give provable approximation guarantees,
both additive and relative, and our methods apply to any
convex discrepancy function. Our algorithms work by con-
necting statistical discrepancy to combinatorial discrepancy;
roughly speaking, we show that in order to maximize a con-
vex discrepancy function over a class of shapes, one needs
only maximize a linear discrepancy function over the same
set of shapes.

We derive general discrepancy functions for data gen-

erated from a one- parameter exponential family. This

generalizes the widely-used Kulldorff scan statistic for data

from a Poisson distribution. We present an algorithm run-

ning in O( 1

ǫ
n

2 log2
n) that computes the maximum discrep-

ancy rectangle to within additive error ǫ, for the Kulldorff

scan statistic. Similar results hold for relative error and

for discrepancy functions for data coming from Gaussian,

Bernoulli, and gamma distributions. Prior to our work, the

best known algorithms were exact and ran in time O(n4).

1 Introduction

Outlier detection (or “bump hunting”[6]) is a common
problem in data mining. Unlike in robust clustering
settings, where the goal is to detect outliers in order to
remove them, outliers are viewed as anomalous events
to be studied further. In the area of biosurveillance for
example, an outlier would consist of an area that had an
unusually high disease rate (disease occurence per unit
population) of a particular ailment. In environmental
monitoring scenarios, one might monitor the rainfall
over an area and wish to determine whether any region
had unusually high rainfall in a year, or over the past
few years.
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A formal statistical treatment of these problems al-
lows us to abstract them into a common framework.
Assume that data (disease rates, rainfall measurements,
temperature) is generated by some stochastic spatial
process. Points in space are either fixed or assumed to
be generated from some spatial point process and mea-
surements on points are assumed to be statistically inde-
pendent and follow a distribution from a one-parameter
exponential family. Also, let b(·) be some baseline mea-
sure defined on the plane. For instance, b(·) can be
the counting measure (counts the number of points in
a region), volume measure (measures volume of a re-
gion), weighted counting measure (adds up non-negative
weights attached to points in a region). In biosurveil-
lance, the counting measure (gives the region popula-
tion) is often used to discover areas with elevated dis-
ease risk. Weighted counting measures which aggregate
weights assigned to points based on some attribute (e.g.
race of an individual) have also been used (see [13] for
an example). Let p be a set of points generating a set
of measurements m(p). Given a measure of discrepancy
f that takes as input the functions m(·) and b(·) and
a collection of regions S, the problem of statistical dis-
crepancy can be defined as:

Find the region S ∈ S for which f invoked on the
measurements for points in S is maximized.

Statistical discrepancy functions arise by asking the
following question: “How likely is it that the observed
points in S come from a distribution that is different
than the distribution of points in Sc?”. The function
f is derived using a likelihood ratio test which has high
statistical power to detect the actual location of clusters,
but is computationally difficult to deal with. As a
consequence, most algorithmic work on this problem has
focused either on fast heuristics that do not search the
entire space of shapes, or on conservative heuristics that
guarantee finding the maximum discrepancy region and
will often (though not always) run in time less than the
worst-case bound of |S| times the function evaluation
cost.

Apart from identifying the region for which f is
maximized, it is customary to evaluate the likelihood
of the identified cluster being generated by chance, i.e.,
compute the probability (called p-value) of maximum



discrepancy to exceed the observed maximum discrep-
ancy under the null hypothesis of no clustering effect.
A small p-value (e.g. < .05) will mean the identified
cluster is statistically significant. Since the distribution
of f is usually not analytically tractable, randomiza-
tion tests ([12, 7]) which involve multiple instances of
the maximum discrepancy computation are run for data
generated from the null model. Thus, the computation
of statistical discrepancy is the main algorithmic bot-
tleneck and is the problem we focus on in this paper.

1.1 Our Contributions In this paper, we present
algorithms with non-trivial worst-case running time
bounds for approximating a variety of statistical dis-
crepancy functions. Our main result is a structural
theorem that reduces the problem of maximizing any
convex discrepancy function over a class of shapes to
maximizing a simple linear discrepancy function over
the same class of shapes.

The power of this theorem comes from the fact
that there are known algorithms for maximizing special
kinds of linear discrepancy functions, when the class
of shapes consists of axis-parallel rectangles. Given
two sets of red and blue points in the plane, the
combinatorial discrepancy of a region is the absolute
difference between the number of red and blue points
in it. Combinatorial discrepancy is very valuable when
derandomizing geometric algorithms; it also appears
in machine learning as the relevant function for the
minimum disagreement problem, where red and blue
points are thought of as good and bad examples for a
classifier, and the regions are hypotheses. This problem
(and a more general variant of it) was considered by
Dobkin, Maass and Gunopoulos in 1995 [5], where they
showed that combinatorial discrepancy for axis-parallel
rectangles in the plane could be maximized exactly in
time O(n2 log n), far better than the O(n4) bound that
a brute-force search would entail.

We show that the Dobkin et. al. algorithm can
be extended fairly easily to work with general linear
discrepancy functions. This result, combined with our
general theorem, allows us to approximate any convex
discrepancy function over the class of axis-parallel rect-
angles. We summarize our results in Table 1; as an
example, we present an additive approximation algo-
rithm for the Kulldorff scan statistic that runs in time
O(1

ǫ n2 log2 n), which compares favorably to the (trivial)
O(n4) running time to compute an exact solution.

Essentially, the reduction we use allows us to decou-
ple the measure of discrepancy (which can be complex)
from the shape class it is maximized over. Using our
approach, if you wanted to maximize a general discrep-
ancy function over a general shape class, you need only

consider combinatorial discrepancy over this class. As
a demonstration of the generality of our method, we
also present algorithms for approximately maximizing
discrepancy measures that derive from different under-
lying distributions. In fact, we provide general expres-
sions for the one-parameter exponential family of dis-
tributions which includes Poisson, Bernoulli, Gaussian
and Gamma distributions. For the Gaussian distribu-
tion, the measure of discrepancy we use is novel, to the
best of our knowledge. It is derived from maximum like-
lihood considerations, has a natural interpretation as a
χ2 distance, and may be of independent interest.

Another notion of outlier detection incorporates
a time dimension. In prospective outlier detection,
we would like to detect the maximum discrepancy
region over all time intervals starting from the present
and going backwards in time. We show that linear
discrepancy can be maximized over such time intervals
and, as a consequence of our reduction, show that
any convex discrepancy function can be approximately
maximized.

2 Related Work

Detecting clustering effects in spatial data is a well-
studied problem in statistics1. Much of the early
focus has been on devising efficient statistical tests to
detect presence of clustering at a global level without
emphasis on identifying the actual clusters (see [3,
Chapter 8]). The spatial scan statistic, introduced by
Kulldorff [13] provides an elegant solution for detection
and evaluation of spatial clusters. The technique has
found wide applicability in areas like public health,
biosurveillance, environmental monitoring etc. For
interesting applications and detailed description of scan
statistics, we refer the reader to [9, 10]. Generalization
of the spatial scan statistic to a space-time scan statistic
for the purpose of prospective surveillance has been
proposed by Kulldorff [14], and Iyengar [8] suggested
the use of “expanding-in-time” regions to detect space-
time clusters. We note that the algorithms described
by Kulldorff are heuristics: they do not guarantee any
bound on the quality of the solution, and do not traverse
the entire space of regions. The regions he considers
are circular, and cylindrical in the case of prospective
surveillance.

Dobkin and Eppstein [4] were the first to study effi-
cient algorithms to compute maximum discrepancy over
a range space. Their algorithms compute discrepancy in

1It goes without saying that there is a huge literature on

clustering spatial data. Since our focus is primarily on statistically

sound measures, a survey of general clustering methods is beyond

the scope of this paper.



This paper Prior work
OPT −ǫ OPT/(1 + ǫ) Exact

Poisson (Kulldorff)/Bernoulli/Gamma O(1
ǫ n2 log2 n) O(1

ǫ n2 log2 n) O(n4)

Gaussian O(1
ǫ n3 log n log log n) O(1

ǫ n2 log2 n) O(n4)

Table 1: Our results. For prospective discrepancy, multiply all bounds by n, and for higher dimensions, multiply
by n2d−4.

a region R as a difference between the fraction of points
in R and the fraction of the total area represented by R.
This measure stems from evaluating fundamental oper-
ations for computer graphics. Their ranges were half
spaces and axis-oriented orthants centered at the ori-
gin, limited to the unit cube, and their results extended
to d-dimensional spaces. Subsequently Dobkin, Gunop-
ulous, and Maass [5] developed algorithms for comput-
ing maximum bichromatic discrepancy over axis-parallel
rectangular regions, where the bichromatic discrepancy
of a region is the difference between the number of red
points and the number of blue points in the region.
This solves the minimum disagreement problem from
machine learning, where an algorithm finds the region
with the most good points and the fewest bad points, a
key subroutine in agnostic PAC learning.

Recently, Neill and Moore have developed a series of
algorithms to maximize discrepancy for measures such
as the Kulldorff spatial scan statistic. Their approach
works for axis parallel squares [15] and rectangles [16].
Their algorithms are conservative, in that they always
find the region of maximum discrepancy. The worst-
case running time of their algorithms is O(n4) for
rectangles and O(n2) for fixed-size squares since the
algorithms enumerate over all valid regions. However,
they use efficient pruning heuristics that allow for
significant speedup over the worst case on most data
sets. An alternative approach by Friedman and Fisher
[6] greedily computes a high discrepancy rectangle,
but has no guarantees as to how it compares to the
optimal. Their approach is quite general, and works in
arbitrary dimensional spaces, but is not conservative:
many regions will remain unexplored.

A one-dimensional version of this problem has been
studied in bioinformatics [11]. The range space is now
the set of all intervals, a problem with much simpler
geometry. In this setting, a relative ǫ-approximation
can be found in O( 1

ǫ2 n) time.
A related problem that has a similar flavor is the

so-called Heavy Hitters problem [2, 1]. In this problem,
one is given a multiset of elements from a universe, and
the goal is to find elements whose frequencies in the
multiset are unusually high (i.e much more than the
average). In a certain sense, the heavy hitter problem

fits in our framework if we think of the baseline data
as the uniform distribution, and the counts as the
measurements. However, there is no notion of ranges2

and the heavy hitter problem itself is interesting in a
streaming setting, where memory is limited; if linear
memory is permitted, the problem is trivial to solve, in
contrast to the problems we consider.

3 Preliminaries

Let P be a set of n points in the plane. Measurements
and baseline measures over P will be represented by
two functions, m : P → R and b : P → R. R denotes a
range space over P . A discrepancy function is defined
as d : (m, b, R) → R, for R ∈ R.

Let mR =
∑

p∈R m(p)/M, bR =
∑

p∈R b(p)/B,
where M =

∑

p∈U m(p), B =
∑

p∈U b(p), and U is
some box enclosing all of P . We will assume that d
can be written as a convex function of mR, bR. All
the discrepancy functions that we consider in this
paper satisfy this condition; most discrepancy functions
considered prior to this work are convex as well. We
can write d(m, b, R) as a function d′ : [0, 1]2 → R, where
d(m, b, R) = d′(mR, bR). We will use d to refer to either
function where the context is clear.

Linear discrepancy functions are a special class of
discrepancy functions where d = α · mR + β · bR +
γ. It is easy to see that combinatorial (bichromatic)
discrepancy, the difference between the number of red
and blue points in a region, is a special case of a linear
discrepancy function.

The main problem we study in this paper is:

Problem 3.1. (Maximizing Discrepancy) Given a
point set P with measurements m, baseline measure b,
a range space R, and a convex discrepancy function d,
find the range R ∈ R that maximizes d.

An equivalent formulation, replacing the range R
by the point r = (mR, bR) is:

Problem 3.2. Maximize convex discrepancy function
d over all points r = (mR, bR), R ∈ R.

2Hierarchical heavy hitters provide the beginnings of such a

notion.



Assume that points now arrive with a timestamp
t(·), along with the measurement m(·) and baseline
b(·). In prospective discrepancy problems, the goal is
to maximize discrepancy over a region in space and
time defined as R× [t, tnow], where R is a spatial range.
In other words, the region includes all points with a
timestamp between the present time and some time t in
the past. Such regions are interesting when attempting
to detect recent anomalous events.

Problem 3.3. (Prospective discrepancy) Given
a point set P with measurements m, baseline measure
b, timestamps t, a range space R, and a convex discrep-
ancy function d, find the range T = (R, [t∗,∞]), R ∈ R
that maximizes d.

3.1 Boundary Conditions As we shall see in later
sections, the discrepancy functions we consider are ex-
pressed as log-likelihood ratios. As a consequence, they
tend to ∞ when either argument tends to zero (while
the other remains fixed). Another way of looking at
this issue is that regions with very low support often
correspond to overfitting and thus are not interesting.
Therefore, this problem is typically addressed by re-
quiring a minimum level of support in each argument.
Specifically, we will only consider maximizing discrep-
ancy over shapes R such that mR > C/n, bR > C/n,
for some constant C. In mapping shapes to points as
described above, this means that the maximization is
restricted to points in the square Sn = [C/n, 1−C/n]2.
For technical reasons, we will also assume that for all p,
m(p), b(p) = Θ(1). Intuitively this reflects the fact that
measurement values are independent of the number of
observations made.

4 A Convex Approximation Theorem

We start with a general approximation theorem for
maximizing a convex discrepancy function d. Let
ℓ(x, y) = a1x + a2y + a3 denote a linear function in
x and y. Define an ǫ-approximate family of d to be
a collection of linear functions ℓ1, ℓ2, . . . , ℓt such that
lU (x, y) = maxi≤t ℓi(x, y), the upper envelope of the ℓi,
has the property that lU (x, y) ≤ d(x, y) ≤ lU (x, y) + ǫ
Define a relative ǫ-approximate family of d to be a
collection of linear functions ℓ1, ℓ2, . . . , ℓt such that
lU (x, y) ≤ d(x, y) ≤ (1 + ǫ)lU (x, y)

Lemma 4.1. Let ℓ1, ℓ2, . . . , ℓt be an ǫ-approximate
family of a convex discrepancy function
d : [0, 1]2 → R. Consider any point set
C ⊂ [0, 1]2. Let (x∗

i , y
∗
i ) = arg maxp∈C ℓi(px,py),

and let (x∗, y∗) = arg maxx∗
i
,y∗

i
ℓi(x

∗
i , y

∗
i ). Let

d∗ = supp∈C d(px,py), dinf = infq∈[0,1]2 d(qx,qy)

and let m = max(lU (x∗, y∗), dinf) . Then

m ≤ d∗ ≤ m + ǫ

If ℓ1, ℓ2, . . . , ℓt is a relative ǫ-approximate family,
then

m ≤ d∗ ≤ (1 + ǫ)m

Proof Sketch. By construction, each point
(x∗

i , y
∗
i , li(x

∗
i , y

∗
i )) lies on the upper envelope lU .

The upper envelope is convex, and lower bounds d(·),
and therefore in each patch of lU corresponding to
a particular ℓi, the maximizing point (x∗

i , y
∗
i ) also

maximizes d(x, y) in the corresponding patch. This
is only false for the patch of lU that supports the
minimum of d(x, y), where the term involving dinf is
needed. This corresponds to adding a single extra
plane tangent to d(·) at its minimumm, which is unique
by virtue of d(·) being convex.

Lemma 4.2. Let f : [0, 1]2 → R be a convex smooth
function. Let f̃ : [0, 1]2 → R be the linear approximation
to f represented by the hyperplane tangent to f at
p ∈ [0, 1]2. Then f̃(p) ≤ f(p), and f(p) − f̃(q) ≤
‖p−q‖2λ∗, where λ∗ is the maximum value of the largest
eigenvalue of H(f), maximized along the line joining p
and q.

Proof. f̃(q) = f(p) + (q − p)⊤∇f(p). The inequality
f̃(p) ≤ f(p) follows from the convexity of f . By
Taylor’s theorem for multivariate functions, the error
f(p) − f̃(q) = (q − p)⊤H(f)(p∗)(q − p), where H(f)
is the Hessian of f , and p∗ is some point on the line
joining p and q.

Writing q − p as ‖q−p‖x̂, where x̂ is a unit vector,
we see that the error is maximized when the expression
x̂⊤H(f)x̂ is maximized, which happens when x̂ is the
eigenvector corresponding to the largest eigenvalue λ∗

of H(f).

Let λ∗ = supp∈Sn
λmax(H(f)(p)). Let ǫp(q) =

‖p− q‖2λ∗, ǫR
p (q) = ‖p− q‖2λ∗f(p).

Lemma 4.3. Let C ⊂ Sn be a set of t points such that
for all q ∈ Sn, minp∈C ǫp(q)(resp. ǫR

p (q)) ≤ ǫ. Then
the t tangent planes at the points f(p),p ∈ C form an
ǫ-approximate (resp. relative ǫ-approximate) family for
f .

Proof. Let C = {p1, . . . ,pt}. Let li denote the tangent
plane at f(pi). For all i, li(q) ≤ f(q) by Lemma 4.2.
Let j = argmini ǫpi

(q). Then lj(q) = maxi li(q) ≤ ǫ.
A similar argument goes through for ǫR

pi
(q)

The above lemmas indicate that in order to con-
struct an ǫ-approximate family for the function f , we



need to sample an appropriate set of points from Sn.
A simple area-packing bound, using the result from
Lemma 4.3, indicates that we would need O(λ∗/ǫ)
points (and thus that many planes). However, λ∗ is
a function of n. A stratified grid decomposition can
exploit this dependence to obtain an improved bound.

Theorem 4.1. Let f : [0, 1]2 → R be a convex smooth
function, and fix ǫ > 0. Let λ(n) = λ∗(Sn). Let
F (n, ǫ) be the size of an ǫ-approximate family for f , and
let FR(n, ǫ) denote the size of a relative ǫ-approximate
family. Let λ(n) = O(nd). Then,

F (n, ǫ) =



















O(1/ǫ) d = 0

O(1
ǫ log 1

d
log n) 0 < d < 1

O(1
ǫ log n) d = 1

O(1
ǫ nd−1 logd log n) d > 1

Let λ′(n) = λ(n)/fmax(n), where fmax(n) denotes
maxp∈Sn

f(p). Then FR(n, ǫ) has size chosen from the
above cases according to λ′(n).

Proof. The relation between FR(n, ǫ) and F (n, ǫ) fol-
lows trivially from the relationship between ǫR

p (q) and
ǫp(q).

If λ(n) is O(1) , then λ∗ can be upper bounded by
a constant, resulting in an ǫ-approximate family of size
O(1/ǫ). The more challenging case is when λ∗ is an
increasing function of n.

Suppose λ∗ = O(nd) in the region Sn. Consider
the following adaptive gridding strategy. Fix numbers
n0, n1, . . . nk, nk+1 = n. Let A0 = Sn0

= [1/n0, 1 −
1/n0]

2. Let Ai = Sni
−∪j<iAi. Thus, A0 is a square of

side 1 − 2/n0, and each Ai is an annulus lying between
Sni+1

and Sni
. A0 has area O(1) and each Ai, i > 0 has

area O(1/ni−1). In each region Ai, λ∗(Ai) = O(nd
i ).

How many points do we need to allocate to A0?
A simple area bound based on Lemma 4.3 shows that
we need λ∗(A0)/ǫ points, which is O(nd

0/ǫ). In each
region Ai, a similar area bound yields a value of
O(nd

i /ǫni−1). Thus the total number of points needed
to construct the ǫ-approximate family is N(d, k) =
nd

0/ǫ +
∑

0<i≤k+1 nd
i /ǫni−1.

Balancing this expression by setting all terms equal,
and setting li = log ni, we obtain the recurrence

li =
(d + 1)li−1 − li−2

d
(4.1)

l1 =
d + 1

d
l0(4.2)

Claim 4.1. lk+1 = log n = (1 +
∑j

i=1 d−i)lk−j+1 −

(
∑j

i=1 d−i)lk−j

Proof. The proof is by induction. The statement is true
for j = 1 from Eq.(4.1). Assume it is true upto j. Then

lk+1 =

(

1 +

j
∑

i=1

d−i

)

lk−j+1 −

(

j
∑

i=1

d−i

)

lk−j

=

(

1 +

j
∑

i=1

d−i

)

[

(d + 1)lk−j − lk−j−1

d

]

−

(

j
∑

i=1

d−i

)

lk−j

=

(

1 +

j+1
∑

i=1

d−i

)

lk−j −

(

j+1
∑

i=1

d−i

)

lk−j−1

Setting j = k in Claim 4.1 yields the expression
log n = (1 +

∑k
i=1 d−i)l1 − (

∑k
i=1 d−i)l0. Substitut-

ing in the value of l1 from Eq.(4.2), log n = (1 +
∑k+1

i=1 d−i) log n0 = 1/α log n0. The number of points
needed is F (n, ǫ) = k+2

ǫ nd
0 = k+2

ǫ ndα.
How large is dα? Consider the case when d > 1:

d

(1 +
∑k+1

i=1 d−i)
= d−1

1−1/dk+2 = dk+2

dk+2−1
(d − 1)

Setting k = Ω(logd log n), F (n, ǫ) =
O(1

ǫ nd−1 logd log n). For example, F (n, ǫ) =
O(1

ǫ n log log n) when d = 2. Similarly, set-
ting k = Ω(log1/d log n) when 0 < d < 1 yields

F (n, ǫ) = O(1
ǫ log1/d log n).

When d = 1, d
(1+

Pk+1

i=1
d−i)

= 1
k+2 . Setting k =

Ω(log n), we get F (n, ǫ) = O(1
ǫ log n).

5 Algorithms for Combinatorial Discrepancy

Lemma 5.1. ([5]) Combinatorial discrepancy for a set
of red and blue points in the plane can be computed in
time O(n2 log n).

Proof Sketch. [See [5] for details] A discrepancy max-
imizing rectangle has minimal and maximal points in
the x and y dimensions. These four points fully de-
scribe the rectangle. By specifying the minimizing and
maximizing y coordinates, the problem is reduced to a
one-dimensional problem of all points within the slab
this defines. By maintaining the maximal discrepancy
interval in the one-dimensional problem under point in-
sertion, only O(n2) insertions are necessary to check the
maximum discrepancy interval over all possible slabs,
and thus over all possible rectangles.

The one-dimensional problem is solved by build-
ing a binary tree of intervals. A node corresponding
to interval I stores the subinterval i of maximal dis-
crepancy, the interval l of maximal discrepancy that



includes the left boundary of I, and the interval r of
maximal discrepancy that includes the right boundary
of I. Two adjacent nodes, Ileft : (ileft, lleft, rleft) and
Iright : (iright, lright, rright), can be merged to form
a single nodes I : (i, l, r) in constant time. i is as-
signed the interval with the maximum discrepancy out
of the set {ileft, iright, rleft ∪ rleft}. l is assigned the
interval with the maximum discrepancy out of the set
{lleft, Ileft ∪ lright}, and r is assigned symmetrically to
l. The entire interval, [0, 1] = I : (i, l, r), is at the root
of the tree, and the interval which maximizes the dis-
crepancy is i. Adding a point requires merging O(log n)
intervals if the tree is balanced, and the tree can be
kept balanced through rotations which only require a
constant number of merge operations each.

Theorem 5.1. Let R′ be the set of all rectangles such
that

∑

p∈R m(p) and
∑

p∈R b(p) are greater than the
constant C. Then any linear discrepancy function of
the form a1

∑

m(p) + a2

∑

b(p) + a3 can be maximized
over this set in O(n2 log n) time.

Proof. Because a3 is constant for all intervals, it can
be ignored. Thus the linear function has the form of
d(m, b, R) =

∑

p∈R χ(p). The algorithm of [5] relies only
on the fact that the discrepancy function is additive,
and hence can be extended to the above discrepancy
function by only modifying the intervals and merge
operation in the one-dimensional case.

Define I ′ to be the set of all intervals such that
∑

p∈I m(p) ≥ C and
∑

p∈I b(p) ≥ C. For each interval
I : (i, l, r), i must be in I ′ and l and r must represent
sets of intervals l1 . . . lk and r1 . . . rh, respectively. lk
(resp. rh) is the interval in I ′ which contains the
left (resp. right) boundary that has the maximum
discrepancy. l1 (resp. r1) is the interval which contains
the left (resp. right) boundary that has the maximum
discrepancy. For all i li includes the left boundary
and |li| < |lj| for all i < j. Also

∑

p∈li
m(p) < C

or
∑

p∈li
b(p) < C for all i < k. Finally, the set l

must contain all local maximum; if li were to gain on
lose one point, the discrepancy would decrease. The
restrictions are the same for all ri, expect these intervals
must contain the right boundary.

The local optimality restriction ensures
∑

p∈li
m(p) <

∑

p∈li+1
m(p) and

∑

p∈li
b(p) <

∑

p∈li+1
b(p). If either measure (

∑

m(p) or
∑

b(p))
increases then the other must also increase or this would
violate the local optimality condition. An increase of
just a measure that increases discrepancy will cause the
previous interval not to be optimal and an increase in
just a measure that causes the discrepancy to decrease
will cause the latter interval not to be optimal. Thus
k and h are constants bounded by the number of p

required for
∑

m(p) ≥ C and
∑

b(p) ≥ C. Thus each
interval in the tree structure stores a constant amount
of information.

A merge between two adjacent intervals Ileft :
(ileft, lleft, rleft) and Iright : (iright, lright, rright) also
can be done in constant time. Computing the maximum
discrepancy interval in I ′ can be done by checking ileft

and iright versus all pairs from lright ∪ rleft such that
∑

m(p) ≥ C and
∑

b(p) ≥ C. There are a constant
number of these. By the local optimality restriction, the
optimal interval in I ′ spanning the boundary must have
one endpoint in each set. Updating l and r can be done
by just pruning from lleft and Ileft ∪ rleft according to
the restrictions for l, and similarly for r. These remain
a constant size after the pruning. Because a merge can
be done in constant time, a point can be added to the
balanced tree in O(log n) time. Hence, the maximum
discrepancy rectangle in R′ for any linear discrepancy
function can be found in O(n2 log n) time.

A similar argument applies if we consider prospec-
tive discrepancy, or higher dimensions. We omit details.

Lemma 5.2. A linear discrepancy function can be maxi-
mized over prospective rectangles in O(n3 log n) time, or
it can be maximized over axis-parallel hyper-rectangles
in d-dimensions in time O(n2d−2 log n).

6 One-parameter Exponential Families

Having developed general algorithms for dealing with
convex discrepancy functions, we now present a general
expression for a likelihood-based discrepancy measure
for the one-parameter exponential family. Many com-
mon distributions like the Poisson, Bernoulli, Gaussian
and gamma distributions are members of this family.
Subsequently we will derive specific expressions for the
above mentioned distribution families.

Definition 6.1. (One-parameter exp. family)
The distribution of a random variable y belongs
to a one-parameter exponential family (denoted by
y ∼ 1EXP(η, φ, T, Be, a) if it has probability density
given by

f(y; η) = C(y, φ)exp((ηT (y) − Be(η))/a(φ))

where T (·) is some measurable function, a(φ) is a
function of some known scale parameter φ(> 0), η is
an unknown parameter (called the natural parameter),
and Be(·) is a strictly convex function. The support
{y : f(y; η) > 0} is independent of η.

It can be shown that Eη(T (Y )) = B
′

e(η) and

Varη(T (Y )) = a(φ)B
′′

e (η). In general, a(φ) ∝ φ.



Let y = {yi : i ∈ R} denote a set of |R|
variables that are independently distributed with yi ∼
1EXP(η, φi, T, b, a), (i ∈ R). The joint distribution of y
is given by

f(y; η) =
∏

i∈R

C(yi, φi)exp((ηT ∗(y) − Be(η))/φ∗)

where 1/φ∗ =
∑

i∈R(1/a(φi)), vi = φ∗/a(φi), and
T ∗(y) =

∑

i∈R(viT (yi)).
Given data y, the likelihood of parameter η is the

probability of seeing y if drawn from a distrbution with
parameter η. This function is commonly expressed in
terms of its logarithm, the log-likelihood l(η;y), which
is given by (ignoring constants that do not depend on
η)

(6.3) l(η;y) = (ηT ∗(y) − Be(η))/φ∗

and depends on data only through T ∗ and φ∗.

Theorem 6.1. Let y = (yi : i ∈ R) be independently
distributed with yi ∼ 1EXP(η, φi, T, b, a), (i ∈ R).
Then, the maximum likelihood estimate (MLE) of η is
η̂ = ge(T

∗(y)), where ge = (B
′

e)
−1. The maximized

log-likelihood (ignoring additive constants) is l(η̂;y) =
(T ∗(y)ge(T

∗(y)) − Be(ge(T
∗(y))))/φ∗.

Proof. The MLE is obtained by maximizing (6.3) as
a function of η. Since Be is strictly convex, B

′

e is
strictly monotone and hence invertible. Thus, the
MLE obtained as a solution of l(η;y)

′

= 0 is η̂ =
(B

′

e)
−1(T ∗(y)) = ge(T

∗(y)). The second part is ob-
tained by substituting η̂ in (6.3).

The likelihood ratio test for outlier detection is
based on the following premise. Assume that data is
drawn from a one-parameter exponential family. For
a given region R1 and its complement R2, let ηR1

and
ηR2

be the MLE parameters for the data in the regions.
Consider the two hypothesis H0 : ηR1

= ηR2
and

H1 : ηR1
6= ηR2

. The test then measures the ratio of
the likelihood of H1 versus the likelihood of H0. The
resulting quantity is a measure of the strength of H1;
the larger this number is, the more likely it is that H1

is true and that the region represents a true outlier.
The likelihood ratio test is individually the test with
most statistical power to detect the region of maximum
discrepancy and hence is optimal for the problems we
consider. A proof of this fact for Poisson distributions is
provided by Kulldorff [13] and extends to 1EXP without
modification.

Theorem 6.2. Let yRj
= (yRji : i ∈ Rj) be indepen-

dently distributed with yRji ∼ 1EXP(ηRj
,φRj i,T, Be, a),

for j = 1, 2. The log-likelihood ratio test statistic for
testing H0 : ηR1

= ηR2
versus H1 : ηR1

6= ηR2
is given

by

(6.4) ∆ = κ(GR1
, ΦR1

) + κ(GR2
, ΦR2

) − κ(G, Φ)

where κ(x, y) = (xge(x) − Be(ge(x)))/y, GRj
=

T ∗(yRj
), 1/ΦRj

=
∑

i∈Rj
(1/a(φRji)), 1/Φ = 1/ΦR1

+

1/ΦR2
, bR1

=
1/ΦR1

(1/ΦR1
+1/ΦR2

) and G = bR1
GR1

+ (1 −

bR1
)GR2

.

Proof. The likelihood ratio is given by
supηR1

6=ηR2
L(ηR1

,ηR2
;yR1

,yR2
)

supηL(η;yR1
,yR2

) . Substituting the MLE

expressions ˆηR1
and ˆηR2

from Theorem 6.1, and setting

G = T ∗(yR1
,yR2

) =

P

j=1,2

P

i∈Rj
T (yRji)/a(φRji)

P

j=1,2

P

i∈Rj
1/a(φRji)

=

1/ΦR1

(1/ΦR1
+1/ΦR2

)GR1
+

1/ΦR2

(1/ΦR1
+1/ΦR2

)GR2
= bR1

GR1
+(1−

bR1
)GR2

, the result follows by computing logarithms.

Fact 6.1. To test H0 : ηR1
= ηR2

versus H1 : ηR1
>

ηR2
, the log-likelihood ratio test statistic is given by

(6.5)
∆ = 1( ˆηR1

> ˆηR2
)(κ(GR1

, ΦR1
)+κ(GR2

, ΦR2
)−κ(G, Φ))

Similar result holds for the alternative H1 : ηR1
< ηR2

with the inequalities reversed.

In the above expression for ∆ (with R1 = R, R2 =
Rc), the key terms are the values bR and GR. GR =
T ∗(yR) is a function of the data (T ∗ is a sufficient
statistic for the distribution), and thus is the equivalent
of a measurement. In fact, GR is a weighted average
of T (yi)s in R. Thus, GR/ΦR =

∑

i∈R T (yi)/a(φi)
represents the total in R. Similarly, G/Φ gives the
aggregate for the region and hence mR = Φ

ΦR

GR

G is
the fraction of total contained in R. Also, 1/ΦR

gives the total area of R which is independent of the
actual measurements and only depends on some baseline
measure. Hence, bR = Φ

ΦR
gives the fraction of total

area in R. The next theorem provides an expression for
∆ in terms of mR and bR.

Theorem 6.3. Let R1 = R and R2 = Rc. To obtain
R ∈ R that maximizes discrepancy, assume G and Φ to
be fixed and consider the parametrization of ∆ in terms
of bR and mR = bRGR/G.

The discrepancy measure (ignoring additive con-
stants) d(., .) is given by

d(mR, bR)
Φ

G
= mRge(G

mR

bR
) −

bR

G
Be(ge(G

mR

bR
)) +

(1 − mR)ge(G
1 − mR

1 − bR
) −(6.6)

(1 − bR)

G
Be(ge(G

1 − mR

1 − bR
))



Proof. Follows by substituting GR = GmR

bR
, GRc =

G1−mR

1−bR
in (6.4), simplifying and ignoring additive con-

stants.

7 Discrepancy Measures For Specific
Distributions

We can now put together all the results from the pre-
vious sections. Section 4 showed how to map a convex
discrepancy function to a collection of linear discrepancy
functions, and Section 5 presented algorithms maximiz-
ing general linear discrepancy functions over axis paral-
lel rectangles. The previous section presented a general
formula for discrepancy in a one-parameter exponential
family. We will now use all these results to derive dis-
crepancy functions for specific distribution families and
compute maximum discrepancy rectangles with respect
to them.

7.1 The Kulldorff Scan Statistic (Poisson dis-
tribution) The Kulldorff scan statistic was designed
for data generated by an underlying Poisson distribu-
tion. We reproduce Kulldorff’s derivation of the likeli-
hood ratio test, starting from our general discrepancy
function ∆.

In a Poisson distribution, underlying points are
marked for the presence of some rare event (e.g. pres-
ence of some rare disease in an individual) and hence the
measurement attached to each point is binary with a 1
indicating presence of the event. The number of points
that get marked on a region R follows a Poisson process
with base measure b and intensity λ if (i) N(∅) = 0, (ii)
N(A) ∼ Poisson(λb(A)), A ⊂ R, b(·) is a baseline mea-
sure defined on R and λ is a fixed intensity parameter
(examples of b(A) include the area of A, total number of
points in A, etc.), and (iii) the number of marked points
in disjoint subsets are independently distributed.

Derivation of the Discrepancy Function. A
random variable y ∼ Poisson(λµ) is a member of
1EXP with T (y) = y/µ, φ = 1/µ, a(φ) = φ, η =
log(λ), Be(η) = exp(η), ge(x) = log(x). For a set
of n independent measurements with mean λµi, i =
1, · · · , n, T ∗(y) =

∑n
i=1 yi/

∑n
i=1 µi, φ

∗ = (
∑n

i=1 µi)
−1.

For a subset R, assume the number of marked points
follows a Poisson process with base measure b(·)
and log-intensity ηR while that in Rc has the same
base measure but log-intensity ηRc . For any par-
tition {Ai} of R and {Bj} of Rc, {N(Ai)} and
{N(Bj)} are independently distributed Poisson vari-
ables with mean {exp(ηR)b(Ai)} and {exp(ηRc)b(Bj)}
respectively. Then, 1/ΦR =

∑

Ai
b(Ai)) = b(R),

1/ΦRc = b(Rc), GR =
P

Ai
N(Ai)

P

Ai
b(Ai)

= N(R)/b(R),

GRc = N(Rc)/b(Rc), and G = N(R)+N(Rc)
b(R)+b(Rc) . Hence,

bR = b(R)
b(R)+b(Rc) and mR = N(R)

N(R)+N(Rc) .

dK(bR, mR)
Φ

G
= mR(log(G) + log(

mR

bR
)) − bR

mR

bR
+

(1 − mR)(log(G) + log(
1 − mR

1 − bR
)) −

1 − mR

1 − bR
(1 − bR)

= mR log(
mR

bR
) +

(1 − mR) log(
1 − mR

1 − bR
) + const

and hence dK(bR, mR) = c(mR log(mR

bR
) + (1 −

mR) log(1−mR

1−bR
)), where c > 0 is a fixed constant. Note

that the discrepancy is independent of the partition used
and hence is well defined.

Maximizing the Kulldorff Scan Statistic. It is
easy to see that dK is a convex function of mR and bR,
is always positive, and grows without bound as either
of mR and bR tends to zero. It is zero when mR = bR.
The Kulldorff scan statistic can also be viewed as the
Kullback-Leibler distance between the two two-point
distributions [mR, 1 − mR] and [bR, 1 − bR]. As usual,
we will consider maximizing the Kulldorff scan statistic
over the region Sn = [1/n, 1 − 1/n]2. To estimate the
size of an ǫ-approximate family for dK , we will compute
λ∗ over Sn.

Let fK(x, y) = x ln x
y + (1 − x) ln 1−x

1−y .

∇fK = i

(

ln
x

1 − x
− ln

y

1 − y

)

+ j

(

−
x

y
+

1 − x

1 − y

)

H(fK) =

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

=

(

1
x(1−x)

−1
y(1−y)

−1
y(1−y)

x
y2 + 1−x

(1−y)2

)

The eigenvalues of H(f) are the roots of the equa-
tion |H(f) − λI| = 0. Solving for λ∗, and substitut-
ing from the expressions for the partial derivatives, and
maximizing over Sn, we obtain λ∗ = Θ(n).

Invoking Theorem 4.1 and Theorem 5.1,

Theorem 7.1. An additive ǫ-approximation to the
maximum discrepancy dK over all rectangles contain-
ing at least a constant measure can be computed in
time O(1

ǫ n2 log2 n). With respect to prospective time
windows, the corresponding maximization takes time
O(1

ǫ n3 log2 n).

The Jensen-Shannon divergence is a symmetrized
variant of the Kullback-Leibler distance. We mentioned
earlier that dK can be expressed as a Kullback-Leibler



distance. Replacing this by the Jensen-Shannon dis-
tance, we get a symmetric version of the Kulldorff statis-
tic, for which all the bounds of Theorem 7.1 apply di-
rectly.

7.2 Gaussian Scan Statistic It is more natural to
use an underlying Gaussian process when measurements
are real numbers, instead of binary events. In this sec-
tion, we derive a discrepancy function for an underlying
Gaussian process. To the best of our knowledge, this
derivation is novel.

Derivation of the Discrepancy Function. A
random variable y that follows a Gaussian distribu-
tion with mean µ and variance 1/τ2 (denoted as y ∼
N(µ, 1/τ2) is a member of 1EXP with T (y) = y, η =
µ, Be(η) = η2/2, φ = 1/τ2, a(φ) = φ, ge(x) = x. For a
set of n independent measurements with mean µ and
variances 1/τ2

i , i = 1, · · · , n(known), φ∗ = (
∑n

i=1 τ2
i )−1

and T ∗(y) =
∑n

i=1 yiτ
2
i /
∑n

i=1 τ2
i . Assume measure-

ments in R are independent N(µR, 1/τ2
i ), (i ∈ R) while

those in Rc are independent N(µRc , 1/τ2
i ), (i ∈ Rc).

Then, ΦR = (
∑

i∈R τ2
i )−1,ΦRc = (

∑

i∈Rc τ2
i )−1, GR =

P

i∈R τ2
i yi

P

i∈R τ2
i

, GRc =
P

i∈Rc τ2
i yi

P

i∈Rc τ2
i

, and G =
P

i∈R+Rc τ2
i yi

P

i∈R+Rc τ2
i

.

Hence, bR = 1/ΦR

(1/ΦR+1/ΦRc ) =
P

i∈R τ2
i

P

i∈R+Rc τ2
i

and mR =
P

i∈R τ2
i yi

P

i∈R+Rc τ2
i

. Thus,

dG(bR, mR)
Φ

G
= mRG

mR

bR
−

bR

G
G

mR

bR
+

(1 − mR)G
1 − mR

1 − bR
−

1 − bR

G
G

1 − mR

1 − bR

= G(
m2

R

bR
+

(1 − mR)2

1 − bR
) − 1 = G

(mR − bR)2

bR(1 − bR)

and hence dG(bR, mR) = c (mR−bR)2

bR(1−bR) , where c > 0 is a

fixed constant. Note that the underlying baseline b(·) is
a weighted counting measure which aggregate weights
τ2
i attached to points in a region.

Maximizing the Gaussian Scan Statistic.
Again, it can be shown that dG is a convex function
of both parameters, and grows without bound as bR

tends to zero or one. Note that this expression can be
viewed as the χ2-distance between the two two-point
distributions [mR, 1−mR], [bR, 1− bR]. The complexity
of an ǫ-approximate family for dG can be analyzed as

in Section 7.1. Let fG(x, y) = (x−y)2

y(1−y) . Expressions for

∇fG and H(fG) are presented in Appendix A.1. Solv-
ing the equation |H − λI|, and maximizing over Sn, we
get λ∗ = O(n2).

Theorem 7.2. An additive ǫ-approximation to the
maximum discrepancy dG over all rectangles contain-

ing at least a constant measure can be computed in time
O(1

ǫ n3 log n log log n). With respect to prospective time
windows, the corresponding maximization takes time
O(1

ǫ n4 log n log log n).

Trading Error for Speed For the Kulldorff
statistic, the function value grows slowly as it ap-
proaches the boundaries of Sn. Thus, only minor im-
provements can be made when considering relative error
approximations. However, for the Gaussian scan statis-
tic, one can do better. A simple substitution shows
that when x = 1 − 1

n , y = 1
n , fG(x, y) = Θ(n). Us-

ing this bound in Theorem 4.1, we see that a rela-
tive ǫ-approximate family of size O(1

ǫ log n) can be con-
structed for dG, thus yielding the following result:

Theorem 7.3. A 1/(1+ ǫ) approximation to the maxi-
mum discrepancy dG over the space of axis parallel rect-
angles containing constant measure can be computed in
time O(1

ǫ n2 log2 n).

7.3 Bernoulli Scan Statistic Modeling a system
with an underlying Bernoulli distribution is appropri-
ate when the events are binary, but more common than
those that would be modeled with a Poisson distribu-
tion. For instance, a baseball player’s batting average
may describe a Bernoulli distribution of the expectation
of a hit, assuming each at-bat is independent.

Derivation of the Discrepancy Function. A
binary measurment y at a point has a Bernoulli dis-
tribution with parameter θ if P (y = 1) = θy(1 −
θ)1−y. This is a member of 1EXP with T (y) =
y, η = log( θ

1−θ ), Be(η) = log(1 + exp(η)), φ = 1, a(φ) =
1, ge(x) = log(x) − log(1 − x).

For a set of n independent measurements with
parameter η, φ∗ = 1/n, T ∗(y) =

∑n
i=1 yi/n. As-

suming measurements in R and Rc are independent
Bernoulli with parameters ηR and ηRc respectively,
ΦR = 1/|R|, ΦRc = 1/|Rc|, GR = y(R)/|R|, GRc =

y(Rc)/|Rc|, bR = |R|
|R|+|Rc| , G = y(R)+y(Rc)

|R|+|Rc| , mR =
y(R)

y(R)+y(Rc) . Note that y(A) denotes the number of 1’s

in a subset A. Thus,

dB(bR, mR)
Φ

G
= mR log(

mR

bR
)+

(1 − mR) log(
1 − mR

1 − bR
) + (

bR

G
− mR) log(1 − G

mR

bR
)

+(
1 − bR

G
− 1 + mR) log(1 − G

1 − mR

1 − bR
)

Maximizing the Bernoulli Scan Statistic.
Much like dK , it is easy to see that dB is a con-
vex function of mR and bR, is always positive, and
grows without bound as either bR or mR tend to zero



or one. The complexity of an ǫ-approximate fam-
ily for dB, the Bernoulli scan statistic, can be ana-
lyzed by letting fB(x, y) = x log x

y + (1 − x) log 1−x
1−y +

(

y
G − x

)

log
(

1 − Gx
y

)

+
(

1−y
G − 1 + x

)

log
(

1 − G1−x
1−y

)

,

where G is a constant. The expressions for ∇fB and
H(fB) are presented in Appendix A.2. Direct substitu-
tion of the parameters yields λ∗ = O(n).

Theorem 7.4. An additive ǫ-approximation to the
maximum discrepancy dB over all rectangles contain-
ing at least a constant measure can be computed in
time O(1

ǫ n2 log2 n). With respect to prospective time
windows, the corresponding maximization takes time
O(1

ǫ n3 log2 n).

7.4 Gamma Scan Statistic When events arrive one
after another, where a Poisson variable describes the
interval between events, then a gamma distribution
describes the count of events after a set time.

Derivation of the Discrepancy Function. A
positive measurement y has a gamma distribution with
mean µ(> 0) and shape ν(> 0) if it has density

νν

µνΓ(ν) exp(− ν
µy)xν−1 and is a member of 1EXP with

T (y) = y, η = − 1
µ(< 0), Be(η) = − log(−η), φ =

1/ν, a(φ) = φ, ge(x) = − 1
x . Following arguments

similar to the Gaussian case, ΦR = (
∑

i∈R νi)
−1, ΦRc =

(
∑

i∈Rc νi)
−1, GR =

P

i∈R νiyi
P

i∈R νi
, GRc =

P

i∈Rc νiyi
P

i∈Rc νi
, G =

P

i∈R+Rc νiyi
P

i∈R+Rc νi
. Hence, bR = 1/ΦR

(1/ΦR+1/ΦRc ) =
P

i∈R νi
P

i∈R+Rc νi

and mR =
P

i∈R νiyi
P

i∈R+Rc νiyi
. Thus,

dγ(bR, mR)
Φ

G
= mR(−

bR

GmR
) −

bR

G
log(G

mR

bR
)+

(1 − mR)(−
1 − bR

G(1 − mR)
) −

1 − bR

G
log(G

1 − mR

1 − bR
)

= bR log(
bR(1 − mR)

mR(1 − bR)
) − log(

1 − mR

1 − bR
) + const

= bR log(
bR

mR
) + (1 − bR) log(

1 − bR

1 − mR
) + const

and hence ignoring additive constants, dγ(bR, mR) =
c(bR log( bR

mR
) + (1 − bR) log( 1−bR

1−mR
)), c(> 0) is a fixed

constant. For a fixed shape parameter (i.e. νi = ν for

each i), bR = |R|
|R|+|Rc| and mR =

P

i∈R yi
P

i∈R+Rc yi
.

Maximizing the Gamma Scan Statistic. Be-
cause dγ = dK up to an additive constant, fγ = fK and
thus λ∗ = O(n) for H(fγ).

Theorem 7.5. An additive ǫ-approximation to the
maximum discrepancy dγ over all rectangles contain-
ing at least a constant measure can be computed in

time O(1
ǫ n2 log2 n). With respect to prospective time

windows, the corresponding maximization takes time
O(1

ǫ n3 log2 n).
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A Gradients and Hessians

A.1 Gaussian Scan Statistic Recall that

fG(x, y) =
(x − y)2

y(1 − y)
.

∇fG = i

(

2x − 2y

y(1 − y)

)

+ j

(

2y − 2x

y(1 − y)
−

(x − y)2(1 − 2y)

y2(1 − y)2

)

H(fG) =

(

2
y(1−y)

−2
y(1−y) −

2(x−y)(1−2y)
y2(1−y)2

−2
y(1−y) −

2(x−y)(1−2y)
y2(1−y)2

2
y(1−y) + 4(x−y)(1−2y)−2(x−y)2

y2(1−y)2 + 2(x−y)2(1−2y)(1−2y3)
y3(1−y)4

)

A.2 Bernoulli Scan Statistic Recall that

f(x, y) = x log
x

y
+(1−x) log

1 − x

1 − y
+
( y

G
− x
)

log

(

1 − G
x

y

)

+

(

1 − y

G
− 1 + x

)

log

(

1 − G
1 − x

1 − y

)

,

where G is a constant.

∇f =i

(

log
x

y
− log

1 − x

1 − y
+ log

(

1 − G
1 − x

1 − y

)

− log

(

1 − G
x

y

))

+

j

(

1

G
log

(

1 − G
x

y

)

−
1

G
log

(

1 − G
1 − x

1 − y

))

H(f) =

(

1
x + 1

1−x + G
(1−y)−G(1−x) + G

y−Gx
−1

y−Gx − 1
(1−y)−G(1−x)

−1
y−Gx − 1

(1−y)−G(1−x)
x

y(y−Gx) + 1−x
(1−y)((1−y)−G(1−x))

)
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