
Spatial Scan Statistics: Approximations and Performance
Study

Deepak Agarwal
Yahoo! Research

Andrew McGregor
University of Pennsylvania

Jeff M. Phillips
Duke University

Suresh Venkatasubramanian
AT&T Labs – Research

Zhengyuan Zhu
University of North Carolina

ABSTRACT
Spatial scan statistics are used to determine hotspots in
spatial data, and are widely used in epidemiology and bio-
surveillance. In recent years, there has been much effort
invested in designing efficient algorithms for finding such
“high discrepancy” regions, with methods ranging from fast
heuristics for special cases, to general grid-based methods,
and to efficient approximation algorithms with provable guar-
antees on performance and quality.

In this paper, we make a number of contributions to the
computational study of spatial scan statistics. First, we de-
scribe a simple exact algorithm for finding the largest dis-
crepancy region in a domain. Second, we propose a new
approximation algorithm for a large class of discrepancy
functions (including the Kulldorff scan statistic) that im-
proves the approximation versus runtime trade-off of prior
methods. Third, we extend our simple exact and our ap-
proximation algorithms to data sets which lie naturally on a
grid or are accumulated onto a grid. Fourth, we conduct a
detailed experimental comparison of these methods with a
number of known methods, demonstrating that our approx-
imation algorithm has far superior performance in practice
to prior methods, and exhibits a good performance-accuracy
trade-off.

All extant methods (including those in this paper) are
suitable for data sets that are modestly sized; if data sets
are of the order of millions of data points, none of these
methods scale well. For such massive data settings, it is nat-
ural to examine whether small-space streaming algorithms
might yield accurate answers. Here, we provide some neg-
ative results, showing that any streaming algorithms that
even provide approximately optimal answers to the discrep-
ancy maximization problem must use space linear in the
input.
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1. INTRODUCTION
With the availability of massive data and cheap comput-

ing power, the problem of detecting “hotspots” has become
ubiquitous and has received a lot of attention in data min-
ing [7, 15, 14]. In particular, the special case of detecting
“bumps” or local clusters in spatial data has found numer-
ous applications in epidemiology, bio-surveillance, astron-
omy etc. While a wide range of methods have been proposed
to test for spatial clustering (after adjusting for an inhomo-
geneous background population), the spatial scan statistic
is by far the most popular. The original method proposed
by [11] computes the maximum discrepancy region obtained
by scanning the spatial region under study with a set of
circular regions of various radii. The discrepancy score for
each region is based on a likelihood ratio test statistic con-
structed to detect significant overdensity under the Poisson
or Bernoulli model. The test was shown to satisfy the opti-
mality property of being the individually most powerful test.
Roughly speaking, this means if the model is correct and the
main focus is to find the actual location of clusters rather
than just detect an overall clustering effect, the spatial scan
statistic is optimal. However, due to the dependencies intro-
duced by considering overlapping regions, the analytical dis-
tribution of the spatial scan statistic is often intractable and
hence one takes recourse to randomization tests [5]. Such a
test computes the distribution of the scan statistic by sim-
ulating data under the null hypothesis (no clustering) and
callibrating the observed value relative to this distribution
(using a p-value) to determine the statistical significance of
the most discrepant region. In general, 1000 simulations
from the null distribution are enough to determine signifi-
cance. In practice, when the null hypothesis holds, one may
be able to conclude statistical insignificance with a lot fewer
repetitions. Originally applied to small sample size prob-
lems in epidemiology, the technique has attracted interest
in the post 9/11 era for surveillance of massive geographic
databases leading to growing interest in computationally ef-
ficient algorithms. Recently, the scan statistic has also been
used in other areas like bioinformatics [10] and for detecting
chatter in massive social networks [17].



Friedman and Fisher [7] introduced an alternative ap-
proach which greedily computes a high discrepancy rect-
angle, but has no guarantees as to how it compares to the
optimal. Their approach is quite general, and works in ar-
bitrary dimensional spaces, but is not conservative: many
regions will remain unexplored. A series of papers by Neill
and Moore [15, 14, 16] developed a grid-based heuristic that
uses pruning strategies to avoid enumerating all
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rectan-
gular ranges; similar ideas work for square ranges as well.
Most recently, Agarwal et al. [1] presented approximation
algorithms that run in time O( 1

ǫ
n2 log2 n) while guarantee-

ing a solution that is at most ǫ less than the optimal solution.
Their algorithm extends to any convex discrepancy function;
the above bound is for the Kulldorff scan statistic.

1.1 Our Contribution
In this paper we continue the investigation of efficient

computational strategies for scan statistics. Our contribu-
tions are as follows:

• We present a new approximation heuristic for comput-
ing scan statistics based on convex discrepancy func-
tions.

• We present an exact algorithm running in time O(g4)
and approximation algorithms running in time O(g3

poly(log g, 1/ǫ)) for grid-based data.

• We implement all of the above algorithms and the al-
gorithm by Agarwal et al., and compare them with an
implementation of the algorithm of Neill and Moore.
We show that our methods are superior in practice,
and scale better than prior methods on both gridded
and non-gridded data.

• We examine the problem of computing scan statistics
on streams. We show that it is hard to approximate
discrepancy functions to within a constant factor using
a stream algorithm without using linear space. We also
have related lower bounds for additive approximations.

Figure 1: Example of maximal discrepancy range
on a data set. Xs are measured data and Os are
baseline data.

2. PRELIMINARIES
Let P be a set of n points in the plane. Measurements

and baseline measures over P will be represented by two
functions, m : P → R and b : P → R. R denotes a
range space over P . A discrepancy function is defined as
d : (m, b, R) → R, for R ∈ R. For instance, in an epidemiol-
ogy application where the goal is to find disease clusters, the
points in space could be a collection of counties. The mea-
surement m associated with each county is the number of
cases of some rare disease and the baseline measure b is the
population at risk. If one assumes a Poisson distribution for
the number of disease cases, the optimal discrepancy mea-
sure d obtained in this scenario is the well known Kulldorff
scan statistic.

Let mR =
P

p∈R m(p)/M, bR =
P

p∈R b(p)/B, where M =
P

p∈U m(p), B =
P

p∈U b(p), and U is some box enclosing
all of P . We will assume that d can be written as a convex
function of mR, bR. All the discrepancy functions that we
consider in this paper satisfy this condition; most discrep-
ancy functions considered prior to this work are convex as
well. We can write d(m, b, R) as a function d′ : [0, 1]2 → R,
where d(m, b, R) = d′(mR, bR). We will use d to refer to
either function where the context is clear. With these no-
tations, the Kulldorff scan statistic (ignoring constants) is
given by

d(mR, bR) = mR log

„

mR

bR

«

+ (1 − mR) log

„

1 − mR

1 − bR

«

if mR > bR and 0 otherwise.
Linear discrepancy functions are a special class of discrep-

ancy functions where d = α ·mR +β ·bR +γ. It is easy to see
that combinatorial (bichromatic) discrepancy, the difference
between the number of red and blue points in a region, is a
special case of a linear discrepancy function.

The main problem we study in this paper is:

Problem 2.1 (Maximizing Discrepancy). Given a po-
int set P with measurements m, baseline measure b, a range
space R, and a convex discrepancy function d, find the range
R ∈ R that (approximately) maximizes d.

An equivalent formulation, replacing the range R by the
point r = (mR, bR) is:

Problem 2.2. (Approximately) Maximize convex discrep-
ancy function d over all points r = (mR, bR), where the
range R ∈ R.

In this paper we will only consider range spaces consist-
ing of axis-parallel rectangles. Two rectangles that contain
the same set of points are equivalent for the purpose of dis-
crepancy calculation. Therefore there are O(n4) distinct
axis-parallel rectangles.

Boundary conditions. As is customary to avoid over-
fitting, we remove from consideration any range that has
very small support in either the baseline or measurements.
Formally, we require that any range and its compliment
has a measure of at least C, for some arbitrary constant
C ≥ 1. In our mapping from ranges to points, this is
equivalent to saying that the domain we maximize over is
Sn = [C/M, 1 − C/M ] × [C/B, 1 − C/B]. Often we only
care about ranges with proportionally more measured data
than baseline data. These points are defined by S+

n =
{(mR, bR) ∈ Sn | mR > bR}.
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Figure 2: Sweep lines, contours, and arcs.

Grid algorithms. For some algorithms, the data is as-
sumed to lie on a grid, or is accumulated onto a set of
grid cells. For such algorithms, we will assume a grid of
size g× g, with measurement and baseline values associated
with each grid point as before. Note that in such a grid,
the effective number of points is g2, and the number of dis-
tinct axis-parallel rectangles is O((g2)2) = g4, which differs
from the corresponding numbers n and O(n4) for points and
axis-parallel rectangles in general position. It will be impor-
tant to keep this distinction in mind when comparing grid
algorithms with those taking inputs in general position.

3. A SIMPLE EXACT ALGORITHM
In this section we present a simple algorithm running in

time O(n4) that computes the maximum discrepancy rect-
angle exactly. Even though there are O(n4) rectangles to
be considered, a naive search strategy might end up taking
linear time for each rectangle (to estimate mR, bR) yielding
a net running time of O(n5). We use a simple sweep line
technique and incremental updates to avoid this problem.

Any set of four points defines a unique bounding rect-
angle, with one point defining each side. See Figure 2(a).
Fix a pair of points pr, pl ∈ P , and consider the set of all
rectangles whose left and right extremes are defined by this
pair. Choose a third point pb ∈ P in between these two; this
point defines the bottom edge of the rectangle if it is below
otherwise one of pr, pl does. Now let a horizontal line seg-
ment spanning the rectangle sweep the plane upwards start-
ing from pb. Every time the sweep line encounters a point,
we update mR, bR in constant time and recompute the dis-
crepancy, maintaining the largest value. Each sweep takes
linear time, and there are O(n3) choices of triples (pl, pr, pb).
Thus, the algorithm runs in time O(n4). The details of this
algorithm are presented in Algorithm 1.

If the points lie in a g × g grid, a similar argument yields
an algorithm (Exact-Grid) that runs in time O(g4). This
algorithm has the same asymptotic running time as the algo-
rithm of Neill and Moore [15], has comparable performance
in practice (see Section 7), and is much simpler.

4. AN APPROXIMATION HEURISTIC
The basis for the heuristic we present in this section is the

following linearization lemma, proved in [1].

Lemma 4.1 ([1]). A discrepancy function of the form
d(mR, bR) = αmR + βbR + γ can be maximized over axis

Algorithm 1 Algorithm Exact

maxd = -1
Sort all points by y-coordinate.
for all pairs of points (pl, pr) do

for i = 1 to n do
Let pb be the point with ith smallest y-coordinate.
m = 0, b = 0
for j = i + 1 to n do {This is the sweep line}

Let p be point with jth smallest y-coordinate
m = m + m(p), b = b + b(p)
d = d(m, b).
if (d > maxd) then

maxd = d

parallel rectangles in time O(n2 log n).

One way of exploiting linearization is to represent the dis-
crepancy function as the upper envelope of a collection of
linear functions. The resulting piece-wise linear function
closely approximates the true discrepancy, and thus any
computation performed using the linear functions will yield
an answer close to the true optimum. We refer to this as the
Approx-Linear Algorithm. This was the approach used
in [1].

However, a better approach exploits two facts: first, we
only wish to approximate the value of the maximum discrep-
ancy rectangle and second, the function being optimized is
monotone in S+

n . Recall that each range R ∈ R can be rep-
resented as a point r = (mR, bR) ∈ [0, 1]2. We wish to find
r∗ = arg maxr∈R d(r), the maximum discrepancy range, or
to find a range which closely approximates r∗. To this end
we will approximate the convex function with a set of t linear
functions: L = {ℓi}

t
i=1, where each ℓi(mR, bR) = αimR +

βibR +γi. By taking the largest point ri = arg maxr∈R ℓi(r)
for each linear function ℓi and then returning r′ = arg maxri

d(ri)
we can approximate the maximum discrepancy range on d.

Let Cz = {(x, y) ∈ S+
n | d(x, y) = z} be the contour of

f at value z. For optimal point r∗, all points in Cd(r∗) are
also optimal, and any point r ∈ Cz such that d(r∗) − ǫ ≤
z ≤ d(r∗) gives an ǫ-approximation to r∗.

Let nr be the normal direction to Cd(r) at r. A linear
function ℓi defines a direction ui, and sorts all points along
that direction.

Lemma 4.2. If ui = nr∗ , then ℓi correctly identifies r∗ as
arg maxr∈R d(r).



(a) To preserve the maximum discrepancy region (the
highest point), we need few functions.

(b) To approximate the function in its entirety we need
many functions.

Figure 3: Projecting onto a linear function

Proof. By definition of r∗, there is no point r ∈ R such
that d(r) > d(r∗). Since d is convex, any point p ∈ Cd(r∗) is
less than or equal to r∗ along direction ui = nr∗ . Thus r∗

is the maximum point along ui.

Thus, if we can find a direction ui such that nr∗ = ui, then
a single invocation of the linearization lemma yields the op-
timal solution. Figure 3 illustrates this idea, one dimension
lower. The plots depicts a convex discrepancy function de-
fined over a single input parameter. A straightfoward linear
approximation of the function would require us to use mul-
tiple linear functions, illustrated in Figure 3(b). However,
the direction approach described above requires us only to
preserve the ordering of points along this direction, and thus
two linear functions suffice (Figure 3(a)).

However, we would like to bound the error caused by a
ui 6= nr∗ , since we do not want to place an ℓi such that
ui = nr for every point r ∈ R.

Lemma 4.3. Consider the point r such that ui = nr and
ℓi(r) = ℓi(r

∗). If d(r) ≥ d(r∗) − ǫ, then ℓi identifies a point
r′ ∈ R that gives an ǫ-approximation to r∗.

Proof. Any point p ∈ S+
n such that d(p) ≤ d(r) = d(r∗)

will have ℓi(p) < ℓi(r). See Figure 2(b). For any point
q ∈ S+

n such that ℓi(q) > ℓi(r), then d(q) > d(r). Thus ℓi

identifies a point q ∈ R such that d(q) ≥ d(r) ≥ d(r∗)−ǫ.

Lemma 4.4. Consider a piece of a convex curve that is
of arc length l and the angle of the normal to the curve
changes by no more than φ < π

2
. This curve segment can

be approximated by a line segment such that the maximum
error is no more than lφ/2.

Proof. Set the line so that it connects both of the end
points of the curve. Since the curve is convex, its error can
be maximized at the mid-point of the segment when the
curve is two segments that bends an angle of π − φ at its
mid-point: see Figure 2(c). Let the height from the mid-
point of the segment to the mid-point of the curve to be
h.

We now have a right triangle with angle φ/2, adjacent side
length less than l/2, and opposite side length h. Thus we
know that tan(φ/2) = h/(l/2). Thus φ/2 = arctan(2h/l) ≥
h/l, for φ less than π. Thus h ≤ lφ/2.

Now let r∗ be the maximal discrepancy range. It can
lie anywhere in S+

n . We want to consider the maximal error
allowed by some linear function ℓi. Let r ∈ Cd(r∗) have nr =
ui. Also let ∆θ(r

∗, i) be the difference in angles between nr∗

and nr = ui. Let g(r∗, r) be the maximal gradient anywhere
on Cd(r∗) between r∗ and r. Now we can bound the error ǫ
incurred by approximating the maximum discrepancy range
on d with ℓi.

ǫ ≤ |r∗ − r| · ∆θ(r
∗, i) · g(r∗, r), (4.1)

since ∆θ(r
∗, i) < π/2 and thus |r∗ − r| < 2 · l(r∗, r), the

arclength of Cd(r∗) between r∗ and r. Thus, we need to
place a set of linear functions to minimize this quantity for
any placement of r∗ in S+

n .

4.1 Approx-Extents Algorithm
Using this intuition we describe a set of linear functions

which exploits these properties. For each of t linear functions
ℓi(mR, bR) = αimR + βibR + γi let

αi = cos
“

sin(hi)
π

2

”

βi = − sin
“

sin(hi)
π

2

”

γi = 0 (4.2)

where hi = (i − 1) · π/(2t − 1). For t ≤ 2, set h1 = π/4, as
this single function often gives a very good approximation
just by itself.

In summary, the Approx-Extents algorithm runs by cre-
ating t linear functions according to (4.2) and then invok-
ing the algorithm described by Lemma 4.1 in [1] on each of
them. Now let the maximal range for each linear function
be ri = arg maxr∈R ℓi(r). We return the maximum ri on d
defined r′ = arg maxri

d(ri). The details of this algorithm
are presented in Algorithm 2.

The running time of Approx-Extents is O(tn2 log n) be-
cause we invoke Lemma 4.1 t times.

5. GRID ALGORITHMS
As we mentioned earlier, algorithms like those presented

in [15, 14] aggregate data to a regular g× g grid. Since such



Algorithm 2 Algorithm Approx-Extents

maxd = −1
for i = 1 to t do

φi = sin(i · π
2t−1

)π
2

ℓi = cos(φi)mR − sin(φi)bR

Find ri = arg maxr∈R ℓi(r) using Lemma 4.1.
di = d(ri)
if (di > maxd) then

maxd = di; r′ = ri

a grid contains g2 points, one can run any of the above men-
tioned algorithms, setting n = g2. However, this is very inef-
ficient, and ignores the special structure of the grid. For ex-
ample, algorithm Exact would then run in time O((g2)4) =
O(g8). In this section, we present two algorithms that take
advantage of grid structured data.

5.1 Exact-Grid Algorithm
The first algorithm returns the maximum discrepancy rect-

angle in time O(g4). It is quite similar to the algorithm of
Section 3, using a sweep line to explore the space of rectan-
gles. The basic idea is as follows. We maintain four sweep
lines, two horizontal and two vertical. The two vertical
sweep lines move from left to right. At any moment, one
of them is at x position i, and the other at x position j > i.
As the second sweep line moves from i to the right most
position, we maintain a count, for each row, of the total
measured and baseline mass in this row between i and j.
This can be done in time O(g) for each move of the second
sweep line. Once the two vertical sweep lines are fixed, two
horizontal sweep lines move from bottom to top. Since we
maintain counts of the total mass in each row, the discrep-
ancy function for the range bounded by the four sweep lines
can be computed in constant time every time the higher
horizontal sweep line is moved. A detailed description is
presented in Algorithm 3.

Algorithm 3 Algorithm Exact-Grid: Input is g × g grid
with values m(i, j), b(i, j)

for i = 1 to g do {Left sweep line}
Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
for y = 2 to g do

m[y]+= m[y − 1], b[y]+= b[y − 1]
for j = i + 1 to g do {Right sweep line}

m = 0, b = 0
for y = 1 to g do

m+= m(j, y), b+= b(j, y),m[y]+= m, b[y]+= b
for k = 1 to g do {Bottom sweep line}

for l = k to g do {Top sweep line}
if k = 1 then

m = m[k], b = b[k]
else

m = m[l] − m[k − 1], b = b[l] − b[k − 1]
if (d(m, b) > max) then

max = d(m, b)

5.2 Approx-Grid Algorithm
Our second algorithm is approximate, and builds upon

the approximate schemes developed in [1] and in Section 4.
In all our approximate schemes, the main subroutine is an

O(n2 log n) time algorithm for maximizing a linear discrep-
ancy function over the space of all axis-parallel rectangles.
It is easy to extract from this algorithm an O(n) algorithm
Linear1D for finding the interval in one dimension that
maximizes any linear discrepancy function. Naively trans-
ferring the algorithm over rectangles to the grid would yield
an algorithm running in time O(g4 log g). We improve this
to O(g3). In brief, the O(n2 log n) procedure [1] uses two
horizontal sweep lines going from bottom to top. For any
position of the two sweep lines, the maximum discrepancy
rectangle among rectangles bounded by these lines can be
found by projecting all points onto the lower sweep line and
solving a one-dimensional problem (the resulting interval de-
fines the x-extents of the optimal rectangle). In the modified
grid variant, we maintain two arrays m[], b[], each of size g,
such that m[i] stores the sum of all values m(i, j) between
the lower and upper sweep lines. Note that this can be
maintained in constant time per entry as the upper sweep
line moves. For each such movement, we run Linear1D on
the values of m[] and b[]. The total running time is there-
fore g positions of the bottom sweep line × g positions of
the top sweep line × O(g) for updating counts and running
Linear1D, for a net running time of O(g3).

We describe the algorithm in detail in two parts. First
we give the O(g3) gridded algorithm for linear discrepancy
functions on a grid: Algorithm 4.

Algorithm 4 Algorithm Linear-Grid: Input is g × g grid
with values m(i, j), b(i, j), and linear function ℓ

maxd = −1
for i = 1 to g do {Left sweep line}

Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
for j = i + 1 to g do {Right sweep line}

for y = 1 to g do
m[y]+= m(j, y), b[y]+= b(j, y)

(d, yb, yt) = Linear1D(ℓ, m[], b[]).
if (d > maxd) then

maxd = d; r = [i, j] × [yb, yt]

This algorithm is then used as the core subroutine in Al-
gorithm 5.

Algorithm 5 Algorithm Approx-Grid

maxd = −1
for i = 1 to t do

Generate ℓi according to (4.2).
(d, ri) = Linear-Grid (m[], b[], ℓi).
di = d(ri)
if (di > maxd) then

maxd = di; r′ = ri

The runtime of Approx-Grid is O(tg3), since there are t
calls of Linear-Grid which runs in O(g3). This algorithm
could also use a family of linear functions as in Agarwal
et al. [1]. Then it would give an ǫ-approximation to the
maximum discrepancy range on the grid and would run in
O( 1

ǫ
g3 log g). We use the former version because it is more

efficient as is demonstrated in Section 7

6. STREAMING ALGORITHMS
In this section we consider algorithms for the data stream

model [9, 6, 2]. Here the data points arrive in some, possibly



adversarial, order. An algorithm in the streaming model
has limited space, S, to catalog all the points in the stream.
Unfortunately most of our results will be lower bounds.

As is typical for lower bounds in the stream model, our
lower bounds are proved using reductions from communi-
cation complexity problems [12]. We denote Cδ(f) as the
δ-error randomized communication complexity of function
f . Also, let C1-way

δ (f) be the one-way δ-error randomized
communication complexity of function f .

Definition 1 (Indexing). There are two player P1 and
P2. P1 has an n bit string x and P2 has an index j ∈ [n].
The indexing function returns index(x, j) = xj.

Definition 2 (Multi-Party Set Disjointness). There
are t players P1, . . . , Pt. Pi has an n bit string xi. The t-
party set disjointness [3] function returns disjn,t(x

1, . . . , xt) =
Wn

j=1

Vt
i=1 xi

j.

Theorem 6.1. For any 0 < δ < 1/4, C1-way

δ (indexn) =
Ω(n). The result remains true for instances (x, j) where x
has exactly n/2 entries which are 1.

Theorem 6.2 (Chakrabarti et al. [4]). For any 0 <
δ < 1/4,

Cδ(disjn,t) = Ω

„

n

t log t

«

.

This result remains true for the following family F of in-
stances (x1, . . . xt) satisfying

|{j : xi
j = 1}| = n/2t ∀i ∈ [t] (6.1)

|{i : xi
j = 1}| ∈ {0, 1, t} ∀j ∈ [n] (6.2)

|{j : |{i : xi
j = 1}| = t}| ≤ 1 . (6.3)

For a linear discrepancy function,

d(R) = α · mR + β · bR + γ (α > 0, β < 0) .

we make the assumptions that m : P → N, b : P → N

and that m∗ = maxp∈P m(p) and b∗ = maxp∈P b(p) are
constant. As a preprocessing step to any algorithm, we con-
struct two point sets Pm and Pb: for each p ∈ P place m(p)
copies of the point in Pm and b(p) copies of the point in
Pb. For each p ∈ Pm let m(p) = 1 and b(p) = 0. Similarly,
for each p ∈ Pb let m(p) = 0 and b(p) = 1. Henceforth we
will refer to a point p being colored red if p ∈ Pm, or blue
if p ∈ Pb. Note that |Pm ∪ Pn| = O(n) and that this con-
struction can be achieved in O(n) time. Finally note that
discrepancy for any R ∈ R is the same with respect to P as
it is to Pm ∪ Pb.

We will also consider the problem of maximizing numeri-
cal discrepancy. Here we assume that the P points are drawn
from some universe U . For all p ∈ P , m(p) = 1. Then the
numerical discrepancy is,

d(R) = mR −
|R ∩ U |

|U |
.

Theorem 6.3. Any P pass streaming algorithm return-
ing a t relative approximation to the numerical discrepency
with probability at least 3/4 requires Ω(n/(t6P log t)) space.
Alternatively, any P pass streaming algorithm returning an ǫ
additive approximation with probability at least 3/4 requires
Ω(1/(ǫP)) space.

Proof. Let (x1, . . . , xt′) ∈ F be an instance of disjn′,t′

where n′ = n/(3t2) and t′ = 3t2. We will show how to trans-

form (x1, . . . , xt′) into a size n′t′ = n instance of the numeri-
cal discrepancy problem such that t-approximating the max-
imum numerical discrepancy problem determines the value
of disjn′,t′ .

The stream we define consists of n′t′ elements E where
elements will come from a universe [n′(t′ +1)]. We partition
the universe into regions R1, . . . , Rn′ where Ri = [(i−1)(t′+
1) + 1, i(t′ + 1)]. Each player Pi determines a size n′ subset
of the elements,

Ei = {(i − 1)(t′ + 1) + j + 1 : xi
j = 0, j ∈ [n′]}

∪{(i − 1)(t′ + 1) + 1 : xi
j = 1, j ∈ [n′]} .

Note that every region contains t′ elements from E. We next
show how the maximum discrepancy of the set depends on
the value of disjn′,t′ .

1. If disjn′,t′ = 1 then the maximum numerical discrep-
ancy is at least

t′

n′t′
−

1

n′(t′ + 1)
=

t′

n′(t′ + 1))
,

since there exists an element with multiplicity t′.

2. If disjn′,t′ = 0 then each element occurs at most once.
Consider any interval R ⊆ [n′(t′ + 1)]. The numerical
discrepancy in any Ri is exactly 0. Furthermore, the
numerical discrepancy in any subinterval of R whose
length l ≤ t′ is at most

l

n′t′
−

l

n′(t′ + 1)
=

l

n′t′(t′ + 1)
.

Hence the numerical discrepancy in interval R is at
most 2/(n′(t′ + 1)).

Hence, if an algorithm disambiguates between the maximum
numerical discrepancy being greater than t′/(n′(t′ + 1)) or
less than 2/(n′(t′ + 1)) then the value of disjn′,t′ is also
determined. Therefore, a relative approximation better than
p

t′/2 > t determines disjn′,t′ .
Assume that there exists a P pass algorithm A that re-

turns a t relative approximation to the maximum numerical
discrepancy of n points (with probability at least 3/4) and
uses at most S(n, t) bits of memory. This algorithm gives
rise to a communication protocol for disjn′,t′ as follows. Let
the stream be ordered as E1, E2, . . . , Et′ . Let mi,j be the
memory state of A after the last elements from Ei has gone
past in the j pass. Each player Pi constructs Ei from xi. P1

runs A on E1 and sends the memory state m1,1 to P2. P2 ini-
tializes A with memory state m1,1, runs A on E2 and sends
the memory state, m1,2, to P3. They continue in this way
where mi,j is the (i+t′(j−1))th message sent. The memory
state mt′,P determines a t approximation to the maximum
discrepancy and, therefore, the value of disjn′,t′ . Each mes-
sage is at most S(n, t) bits long and there are at most t′P
messages. Hence the total communication is O(t′S(n, t)P)
bits. By appealing to Theorem 6.2, we deduce that,

S(n, t) = Ω

„

n′

t′2P log t′

«

= Ω

„

n

t6P log t

«

.

The second lower bound uses a similar reduction to the first
except that t′ = 3, n′ = 1/(8ǫ) and every point in the above
construction is replaced by 8ǫn/3 identical points.



Note that the above result also applies to approximating
the maximum linear discrepancy where α = −β = 1. This
is because their may be exactly 1 baseline point at every
location in the discretized universe. Although the data in
this lower bound lies on the grid, it applies when the data
need not lie on a grid; shifting each point slightly gives the
same discrepancy values.

Corollary 6.1. Any P pass streaming algorithm return-
ing a t relative approximation to the maximum linear dis-
crepency with probability at least 3/4 requires Ω(n/(t6P log t))
space. Alternatively, any P pass streaming algorithm return-
ing an ǫ additive approximation with probability at least 3/4
requires Ω(1/(ǫP)) space.

The next lower bound gives a dependence on β when ap-
proximating the maximum linear discrepancy.

Theorem 6.4. Any one pass streaming algorithm that ǫ
additively approximates the maximum linear discrepancy with
probability at least 3/4 requires Ω(|β|/ǫ) space.

Proof. Consider an instance (x, j) of index|β|/ǫ. Let
w = |β|/(2ǫ) be the number of 1’s in x. We will show how
to transform (x, j) into a size n + 1 instance of the linear
discrepancy problem such that an additive ǫ-approximation
of the maximum linear discrepancy problem determines the
value of index|β|/ǫ(x, j).

The stream starts with elements determined by P1: for
each i ∈ [|β|/ǫ] such that xi = 1 there are two blue points
with value i. The stream ends with one red point j. Note
that the maximum value of αmR + βbR + γ is α + γ if
index|β|/ǫ(x, j) = 0 and is α− 2ǫ+ γ if index|β|/ǫ(x, j) = 1.

Then, by appealing to Theorem 6.1, we deduce that the
space required is Ω(|β|/ǫ).

6.1 Sampling Algorithms
We now present an algorithm that finds an additive ǫ ap-

proximation to the maximum linear discrepancy. It is based
upon a sampling approach related to the construction of ǫ-
nets and ǫ-approximations [8].

Theorem 6.5. Consider a set of points S in the plane.
Let R be a set of axis-aligned rectangles. An ǫ-approximation
is a subset A of S such that, for any R ∈ R,

˛

˛

˛

˛

|S ∩ R|

|S|
−

|A ∩ R|

|A|

˛

˛

˛

˛

< ǫ .

With probability at least 1 − δ, a random subset of size,

O

„

1

ǫ2
log

„

1

δǫ

««

is an ǫ-approximation.

Theorem 6.6. Let τ = max(α, |β|). There exists an al-
gorithm running in time

O

„

n +
“τ

ǫ

”4

log2
“ τ

δǫ

” “

log
“τ

ǫ

”

+ log log
“ τ

δǫ

””

«

that returns an estimate E such that with probability at least
1 − δ, |E − maxR∈R d(R)| ≤ ǫ.

Proof. We first preprocess the point set as described
above. This takes O(n) time. We randomly construct a sam-
ple P ′ of points as follows: Randomly select a size O((α/ǫ)2

(log(α/(δǫ)))) random subset A′ of Pm. Similarly, construct
B′, a size O((|β|/ǫ)2 log(|β|/(δǫ))) random subset of Pb. Let

P ′ = A′∪B′. Estimate d(R) by d̃(R) = α |A′∩R|
|A′|

+β |B′∩R|
|B′|

+

γ. Then, by Theorem 6.5, with probability at least 1 − δ,
for all R ∈ R,

˛

˛

˛

˛

mR −
|A′ ∩ R|

|A′|

˛

˛

˛

˛

<
ǫ

2α
and

˛

˛

˛

˛

bR −
|B′ ∩ R|

|B′|

˛

˛

˛

˛

<
ǫ

2|β|
.

Hence with probability at least 1 − δ, |d(R) − d̃(R)| ≤ ǫ for
all R ∈ R. We then appeal to Lemma 4.1.

It should be noted that a related algorithm can be used for
numerical discrepancy or when the data is known to lie on
a grid. Further, observe that this algorithm (when used in
conjunction with the reservoir sampling technique [18]) can
be viewed as a streaming algorithm that uses

O

„

“τ

ǫ

”2

log
“ τ

δǫ

”

«

space.

7. EXPERIMENTS
We now present a performance study of the schemes de-

scribed in this paper, and compare them to prior work.

Algorithms. We implemented the simple exact algorithms
Exact and Exact-Grid, as well as the approximation algo-
rithms Approx-Extents and Approx-Grid. We compare
these to two algorithms from prior work; the grid algorithm
NM-Grid of Neill and Moore [15], and the approximation
algorithm Approx-Linear of Agarwal et al. [1].

Code for NM-Grid was provided by the authors [13].
Their code is a black box that solves the maximum discrep-
ancy problem and then runs N randomization tests. It only
returns a range if it is statistically significant. In order to
compare their algorithm we set N = 0 and use the discrep-
ancy generated by Exact-Grid: both solve the problem ex-
actly on the grid. The code for NM-Grid has an additional
parameter allowing it to find an approximate solution. Neill
and Moore [15] demonstrate this giving 5× to 20× speedups
while only misidentifying < 10% of the regions. We did
not investigate this additional parameter due to difficulties
in extracting the discrepancy values. The other algorithms
were implemented by us. All experiments were run on a ma-
chine with 3GHz Pentium IV processor and 1Gb SD-RAM
running CentOS.

It should be noted that given the maximum discrepancy
range for a given set of data, the problem remains to deter-
mine whether it is statistically significant. This is tradition-
ally done by running about 1000 randomization tests, where
the experiment is repeated on randomly generated examples
from a null hypothesis. Only if the maximum discrepancy
range is larger than 95% of the maximum discrepancy ranges
from the randomization tests is it deemed significant. Thus
the problem we describe in this paper, is repeatedly solved
on the order of 1000 times in practical applications, making
an efficient solution paramount for massive data sets. Here
we study solving the maximum discrepancy problem once.

Data sets. We used a combination of real and synthetic
data to evaluate the algorithms. We start with the example-city-in
data file provided with the code for NM-Grid which con-
tains 61291 data points of the form (x, y, b, m) where (x, y)



lies on a 175 × 203 integer grid distributed according to a
relevant population, and where b, m ∈ {0, 1}. The popu-
lation data represents the emergency patients’ home loca-
tions in Western Pennsylvania from 1999 through 2002, and
the measured data are the locations corresponding to pa-
tients from a two month span. We generate data sets of
size n = {256, 512, 1024} first by sampling (x, y) coordi-
nates from example-city-in. We then let x = x + u1 and
y = y + u2 where u1, u2 are drawn uniformly at random
from [0, 1], in order to take the points off the grid. We next
generate b using an exponential distribution to model the
population: we set b = ⌊exp(6u)⌋ where u is uniform ran-
dom in [0, 1]. We then generate a random rectangle R of
size 7 × 9 somewhere in the (x, y) domain. Finally we gen-
erate m = Poisson(b · f2) (where f2 = .005) if the point
is in R and m = Poisson(b · f1) (where f1 = .001) if the
point is outside R. The sample in R should indicate a larger
discrepancy range. We tested various sizes of R and various
values for f1 and f2, but these do not significantly affect the
runtimes or accuracies of our algorithms.

Both the gridded algorithms and the approximation algo-
rithms can tradeoff their accuracy for runtime. For the grid-
ded algorithms we use a g × g grid where g = {64, 128, 256,
512}. For the approximation algorithms we set ǫ, the maxi-
mum error, to ǫ = {.01, .1, 1, 5, 10, 20, 40, 100} for Approx-
Linear and the number of linear functions t = {16, 8, 4, 2, 1}
for Approx-Extents and Approx-Grid.

7.1 Overall Performance
Some of the algorithms we evaluate are approximate, and

others are defined on a grid (which incurs its own error). To
compare these algorithms, we compared their performance
versus error curves. In other words, we looked at, for a
fixed error bound (percentage discrepancy), how fast each
algorithm ran, and for a fixed budget in time, what error
was obtained by the algorithms.

For each data set we use the returned maximum discrep-
ancy value dExact of Exact as ground truth. We measure
error as the percentage discrepancy for an algorithm A by
EA = dA/dExact where dA is its returned maximum dis-
crepancy value of that specific data set. We used 30 data
sets for size n = {256, 512, 1024} which are generated as
described above. We do not test larger values of n in this
manor because Exact becomes prohibitively slow. For each
algorithm at each parameter setting we average the EA val-
ues and the runtime values over all 30 data sets of each size.
Figure 4 presents the results, for all three values of n.

Approximate versus grid algorithms. The first obser-
vation we can make is that the approximation algorithms
are consistently faster than the grid-based algorithms, if one
wishes to get within roughly 20% of the true maximum.
Approx-Extents performs the best overall, in all cases.

As the desired accuracy increases, the approximation al-
gorithms Approx-Extents and Approx-Linear scale bet-
ter, and thus the disparity between their performance and
that of the grid algorithms increases. At the 90% accuracy
level, approximation algorithms are 3400×, 94×, and 31×
faster than the gridded algorithms, for point sets of size 256,
512, 1024. No gridded algorithm has an expected 95% accu-
racy, even for a 512× 512 grid, while the Approx-Extents
algorithm can return this expected approximation with 1
linear function. This is further demonstrated in Figure 5.
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Figure 4: Running time (in seconds) vs error (as a
percentage of the true answer) for all the algorithms.

As n increases, this disparity decreases: the approximate
algorithms degrade in performance; however, their behaviour
remains superior to the grid-based schemes.

Variation in solutions. The values plotted in Figure 4
represent averages over 30 trials each of the algorithms. For
both NM-Grid and Exact-Grid, the standard deviation
of run times are about 25% of the total time, where as for
Approx-Extents and Approx-Linear the standard devi-
ations are only about 2% of the total time. This is likely
because the true asymptotic behavior might be governed by
the fact that NM-Grid and Exact-Grid vary in time de-
pending on how they scan over the data and how many times
they do the updates (if statements), whereas the approxima-
tion algorithms perform the same operations independent of
the positioning of the data.
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Figure 5: Running time (in seconds) vs error (as a percentage of the true answer) for all the algorithms. For
each algorithm, the left column is the minimal time to achieve the percentage discrepancy; the right column
is the percentage slowdown over the fastest algorithm to reach that percentage discrepancy.

7.2 Behaviour of Exact-Grid

From the above graphs, we also note that Exact-Grid,
although usually worse than NM-Grid, is comparable in
speed. This is noteworthy since NM-Grid is a fairly com-
plicated algorithm that uses a recursive prune and search to
determine the optimal solution. On the other hand, Exact-
Grid can be written in a few lines of code. Moreover, the
code provided for NM-Grid cannot be modified easily if
one wishes to use it for other functions.

As the size of the point sets increase the algorithms that
are not on a grid become slower at a faster pace than those
on a grid. We demonstrate this further by generating points
sets with n = 10, 000 in the same way as before and com-
paring the gridded algorithms: Exact-Grid, NM-Grid,
and Approx-Grid. We also run Approx-Extents with
t = {1, 8}. Again we plot, in Figure 6, the curves demon-
strating the tradeoff between percentage discrepancy and
time. However, since it takes too long to run Exact, we
use the maximum discrepancy returned by any algorithm in
place of the ground truth for each data set.

Note that NM-Grid still perform better than Exact-
Grid. However, the difference is small, and might often
be outweighed by the simplicity of the code for Exact-
Grid. Also Approx-Grid is now working much faster than
Exact-Grid and NM-Grid. This is probably because the
true asymptotic behavior is somehow governed by the num-
ber of grid cells that have nonzero values, and Approx-
Grid is faster by a factor of g/t asymptotically. So when g
is large and t small this pays off.

Also notice how Approx-Extents continues to perform
faster than NM-Grid and Exact-Grid for g = 512, and
has much less error. Hence, for large data sets, Approx-
Extents is better if minimizing error is important. How-
ever, if performance is critical, and error bounds on the order
of 20% are tolerable, then gridded algorithms are superior,
and Approx-Grid is the best algorithm to use.
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Figure 6: Running time (in seconds) vs error (as
percentage of best known answer) for 10000 points.

7.3 Number of Linear Functions
Both Approx-Linear and Approx-Extents approximate

the convex discrepancy function with a set of linear func-
tions. Approx-Extents requires far fewer linear functions
to get the same expected error. We verify this by plotting
the percentage discrepancy (averaged over the data sets used
above with n = {256, 512, 1024}) versus the number of linear
functions used to approximate d (see Figure 7).

Approx-Linear requires about 80 linear functions to get
an expected error of about 1%, where as Approx-Extents
only needs 8: a 10× speedup. Also Approx-Extents never
drops below 93% expected percentage discrepancy even with
1 linear function whereas Approx-Linear drops below 90%
with less than 5 linear functions.

7.4 Variance of Percentage Discrepancy
To assess the effect of our approximation parameters on

the statistical power of the resultant scan statistic, we ana-
lyzed the variation in the distribution of percentage discrep-
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Figure 7: Number of linear functions needed by
Approx-Linear and Approx-Extents to achieve and
expected error.

ancy. We note that high variation in this distribution would
lead to erroneous p-values and invalidate our approximation
algorithms. We find consistently small variance estimates
both for Approx-Extents and Approx-Linear. In fact,
Approx-Extents consistently provides small variance for
t = {8, 16}, as does Approx-Linear for ǫ = {.01, .1}. The
coefficient of variation drops off to zero rapidly with increase
in EA (see Figure 8). Also, the coefficient of variation tends
to get smaller with increase in the number of points. A
direct evaluation of the power curves involving large scale
simulation experiments will be reported in future work.2 5 6
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Figure 8: Variance of percentage discrepancy.
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