
Stability of ε-Kernels

Pankaj K. Agarwal, Jeff M. Phillips, and Hai Yu

Duke University, University of Utah, and Google

Abstract. Given a set P of n points in Rd, an ε-kernel K ⊆ P approxi-
mates the directional width of P in every direction within a relative (1−ε)
factor. In this paper we study the stability of ε-kernels under dynamic
insertion and deletion of points to P and by changing the approximation
factor ε. In the first case, we say an algorithm for dynamically maintain-
ing a ε-kernel is stable if at most O(1) points change in K as one point
is inserted or deleted from P . We describe an algorithm to maintain an
ε-kernel of size O(1/ε(d−1)/2) in O(1/ε(d−1)/2 + logn) time per update.
Not only does our algorithm maintain a stable ε-kernel, its update time
is faster than any known algorithm that maintains an ε-kernel of size
O(1/ε(d−1)/2). Next, we show that if there is an ε-kernel of P of size
κ, which may be dramatically less than O(1/ε(d−1)/2), then there is an
(ε/2)-kernel of P of size O(min{1/ε(d−1)/2, κbd/2c logd−2(1/ε)}). More-
over, there exists a point set P in Rd and a parameter ε > 0 such that
if every ε-kernel of P has size at least κ, then any (ε/2)-kernel of P has
size Ω(κbd/2c). 1

1 Introduction

With recent advances in sensing technology, massive geospatial data sets are
being acquired at an unprecedented rate in many application areas, including
GIS, sensor networks, robotics, and spatial databases. Realizing the full poten-
tial of these data sets requires developing scalable algorithms for analyzing and
querying them. Among many interesting algorithmic developments to meet this
challenge, there is an extensive amount of work on computing a “small sum-
mary” of large data sets that preserves certain desired properties of the input
data and on obtaining a good trade-off between the quality of the summary and
its size. A coreset is one example of such approximate summaries. Specifically,
for an input set P and a function f , a coreset C ⊆ P is a subset of P (with
respect to f) with the property that f(C) approximates f(P). If a small-size
coreset C can be computed quickly (much faster than computing f(P)), then
one can compute an approximate value of f(P) by first computing C and then
computing f(C). This coreset-based approach has been successfully used in a
wide range of geometric optimization problems over the last decade; see [2].
1 Research supported by subaward CIF-32 from NSF grant 0937060 to CRA, by NSF

under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants
W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01,
by a DOE grant OEG-P200A070505, and by a grant from the U.S.–Israel Binational
Science Foundation.

ε-kernels. Agarwal et al. [1] introduced the notion of ε-kernels and proved
that it is a coreset for many functions. For any direction u ∈ Sd−1, let P [u] =
arg maxp∈P 〈p, u〉 be the extreme point in P along u; ω(P, u) = 〈P [u]−P [−u], u〉
is called the directional width of P in direction u. For a given ε > 0, K ⊂ P ⊂ Rd
is called an ε-kernel of P if

〈P [u]−K[u], u〉 ≤ εω(P, u)

for all directions u ∈ Sd−1.2 For simplicity, we assume ε ∈ (0, 1), because for
ε ≥ 1, one can choose a constant number of points to form an ε-kernel. By
definition, if X is an ε-kernel of P and K is a δ-kernel of X, then K is a (δ+ ε)-
kernel of P .

Agarwal et al. [1] showed that there exists an ε-kernel of size O(1/ε(d−1)/2)
and it can be computed in time O(n+1/ε3d/2), when d is fixed (assumed through-
out the paper). The running time was improved by Chan [6] to O(n+ 1/εd−3/2)
(see also [10]). In a number of applications, the input point set is being up-
dated periodically, so algorithms have also been developed to maintain ε-kernels
dynamically. Agarwal et al. [1] had described a data structure to maintain an
ε-kernel of size O(1/ε(d−1)/2) in (log(n)/ε)O(d) time per update. The update
time was recently improved by Chan [7] to O((1/ε(d−1)/2) log n+ 1/εd−3/2). His
approach can also maintain an ε-kernel of size O((1/εd) log n) with update time
O(log n). If only insertions are allowed (e.g. in a streaming model), the size of
the data structure can be improved to O(1/ε(d−1)/2) [4, 11].

In this paper we study two problems related to the stability of ε-kernels: how
ε-kernels change as we update the input set or vary the value of ε.

Dynamic stability. Since the aforementioned dynamic algorithms for maintain-
ing an ε-kernel focus on minimizing the size of the kernel, changing a single point
in the input set P may drastically change the resulting kernel. This is partic-
ularly undesirable when the resulting kernel is used to build a dynamic data
structure for maintaining another information. For example, kinetic data struc-
tures (KDS) based on coresets have been proposed to maintain various extent
measures of a set of moving points [2]. If an insertion or deletion of an object
changes the entire summary, then one has to reconstruct the entire KDS in-
stead of locally updating it. In fact, many other dynamic data structures for
maintaining geometric summaries also suffer from this undesirable property [9].

We call an ε-kernel s-stable if the insertion or deletion of a point causes the ε-
kernel to change by at most s points. For brevity, if s = O(1), we call the ε-kernel
to be stable. Chan’s dynamic algorithm can be adapted to maintain a stable ε-
kernel of size O((1/εd−1) log n); see Lemma 1 below. An interesting question is
whether there is an efficient algorithm for maintaining a stable ε-kernel of size
O(1/ε(d−1)/2), as points are being inserted or deleted. Maintaining a stable ε-
kernel dynamically is difficult for two main reasons. First, for an input set P ,

2 This is a slightly stronger version of the definition than defined in [1] and an ε-
kernel K gives a relative (1 + 2ε)-approximation of ω(P, u) for all u ∈ Sd−1 (i.e.
ω(K,u) ≤ ω(P, u) ≤ (1 + 2ε)ω(K,u)).

many algorithms compute ε-kernels in two or more steps. They first construct
a large ε-kernel K ′ (e.g. see [1, 7]), and then use a more expensive algorithm to
create a small ε-kernel of K ′. However, if the first algorithm is unstable, then K ′

may change completely each time P is updated. Second, all of the known ε-kernel
algorithms rely on first finding a “rough shape” of the input set P (e.g., finding a
small box that contains P), estimating its fatness [5]. This rough approximation
is used crucially in the computation of the ε-kernel. However, this shape is itself
very unstable under insertions or deletions to P . Overcoming these difficulties,
we prove the following in Section 2:

Theorem 1. Given a parameter 0 ≤ ε ≤ 1, a stable ε-kernel of size O(1/ε(d−1)/2)
of a set of n points in Rd can be maintained under insertions and deletions in
O(1/ε(d−1)/2 + log n) amortized time.

Note that the update time of maintaining an ε-kernel of size O(1/ε(d−1)/2)
is better than that in [7].

Approximation stability. If the size of an ε-kernel K is O(1/ε(d−1)/2), then de-
creasing ε changes K quite predictably. However, this is the worst-case bound,
and it is possible that the size of K may be quite small, e.g., O(1), or in general
much smaller than the 1/ε(d−1)/2 maximum (efficient algorithms are known for
computing ε-kernels of near-optimal size [2]). Then how much can the size in-
crease as we reduce the allowable error from ε to ε/2? For any ε > 0, let κ(P, ε)
denote the minimum size of an ε-kernel of P . Unlike many shape simplification
problems, in which the size of simplification can change drastically as we reduce
the value of ε, we show (Section 3) that this does not happen for ε-kernels and
that κ(P, ε/2) can be expressed in terms of κ(P, ε).

Theorem 2. For any point set P and for any ε > 0,

κ(P, ε/2) = O(min{κ(P, ε)bd/2c logd−2(1/ε), 1/ε(d−1)/2}).

Moreover, there exist a point set P and some ε > 0 such that κ(P, ε/2) =
Ω(κ(P, ε)bd/2c).

2 Dynamic Stability

In this section we describe an algorithm that proves Theorem 1. The algorithm
is composed of a sequence of modules, each with certain property. We first state
that Chan’s dynamic coreset algorithm [7] can be made stable (see proof in full
version [3]):

Lemma 1. For any 0 < ε < 1, an ε-kernel K of P of size O((1/εd−1) log n)
can be maintained in O(log n) time with O(1) changes to K per update.

We first define the notion of anchor points and fatness of a point set and
describe two algorithms for maintaining stable ε-kernels with respect to a fixed
anchor: one of them maintains a kernel of size O(1/εd−1) and the other of size

O(1/ε(d−1)/2); the former has smaller update time. Then we describe the algo-
rithm for updating anchor points and maintaining a stable kernel as the anchors
change. Finally, we put these modules together to obtain the final algorithm.
We make the following simple observation, which will be crucial for combining
different modules.

Lemma 2 (Composition Lemma). If K is an s-stable ε-kernel of P and K ′ is
an s′-stable ε′-kernel of K, then K ′ is an (s · s′)-stable (ε+ ε′)-kernel of P .

Anchors and fatness of a point set. We call a point set P β-fat if

max
u,v∈Sd−1

ω(P, u)/ω(P, v) ≤ β.

If β is a constant, we sometimes just say that P is fat. An arbitrary point set P
can be made fat by applying an affine transform: we first choose a set of d + 1
anchor points A = {a0, a1, . . . , ad} using the following procedure of Barequet
and Har-Peled [5]. Choose a0 arbitrarily. Let a1 be the farthest point from a0.
Then inductively, let ai be the farthest point from the flat span(a0, . . . , ai−1).
(See Figure 1.) The anchor points A define a bounding box IA with center at a0

and orthogonal directions defined by vectors from the flat span(a0, . . . , ai−1) to
ai. The extents of IA in each orthogonal direction is defined by placing each ai
on a bounding face and extending IA the same distance from a0 in the opposite
direction. Next we perform an affine transform TA on P such that the vector
from the flat span(a0, . . . , ai−1) to ai is equal to ei, where e0 = (0, . . . , 0), e1 =
(1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). This ensures that TA(P) ⊆ TA(IA) = [−1, 1]d.
The next lemma shows that TA(P) is fat, and follows easily from [8].

Lemma 3. For all u ∈ Sd−1 and for βd ≤ 2dd5/2d!,

ω(TA(A), u) ≤ ω(TA(P), u) ≤ ω(TA(IA), u) ≤ βd · ω(TA(A), u). (1)

a0

a1

a2

IA H

e

Fig. 1. Anchor points A = {a0, a1, a2}, rectangle IA, and transform TA applied to P ;
square H, two-dimensional grid G, and one-dimensional grid Ge on the edge e of H.

Agarwal et al. [1] show if K is an ε-kernel of P , then T (K) is an ε-kernel of
T (P) for any affine transform T , which implies that one can compute an ε-kernel
of T (P). We will need the following generalization of the definition of ε-kernel.
For two points sets P and Q, a subset K ⊆ P is called an ε-kernel of P with
respect to Q if 〈P [u]−K[u], u〉 ≤ εω(Q, u) for all u ∈ Sd−1.

Stable ε-kernels for a fixed anchor. Let A be a set of anchor points of P , as
described above. We describe algorithms for maintaining stable ε-kernels (with
respect to A) under the assumption that A remains a set of anchor points of P ,
i.e., A ⊆ P ⊂ IA, as P is being updated by inserting and deleting points. In view
of the above discussion, without loss of generality, we assume IA = [−1,+1]d and
denote it by H. As for the static case [1, 6], we first describe a simpler algorithm
that maintains a stable ε-kernel of size O(1/εd−1), and then a more involved one
that maintains a stable ε-kernel of size O(1/ε(d−1)/2).

Set δ = ε/
√
d and draw a d-dimensional grid G inside H of size δ, i.e., the

side-length of each grid cell is at most δ; G has O(1/δd) cells. For each grid cell
τ , let Pτ = P ∩ τ . For a point x ∈ H lying in a grid cell τ , let x̂ be the vertex of
τ nearest to the origin; we can view x being snapped to the vertex x̂. For each
facet f of H, G induces a (d−1)-dimensional grid Gf on f ; G contains a column
of cells for each cell in Gf . For each cell ∆ ∈ Gf , we choose (at most) one point
of P as follows: let τ be the nonempty grid cell in the column of G corresponding
to ∆ that is closest to f . We choose an arbitrary point from Pτ ; if there is no
nonempty cell in the column, no point is chosen. Let Lf be the set of chosen
points. Set L =

⋃
f∈H Lf . Agarwal et al. [1] proved that L is an ε-kernel of P .

Insertion or deletion of a point in P affects at most one point in Lf , and it can
be updated in O(log(1/ε)) time. Hence, we obtain the following:

Lemma 4. Let P be a set of n points in Rd, let A ⊆ P be a set of anchor points
of P , and let 0 < ε < 1 be a parameter. P can be preprocessed in O(n+ 1/εd−1)
time, so that a (2d)-stable ε-kernel of P with respect to A of size O(1/εd−1) can
be maintained in O(log 1/ε) time per update provided that A remains an anchor
set of P .

Agarwal et al. [1] and Chan [6] have described algorithms for computing an
ε-kernel of size O(1/ε(d−1)/2). We adapt Chan’s algorithm to maintain a stable
ε-kernel with respect to a fixed anchor A. We begin by mentioning a result of
Chan that lies at the heart of his algorithm.

Lemma 5 (Chan [6]). Let E ∈ N, Eτ ≤ F ≤ E for some 0 < τ < 1, and
P ⊆ [0 : E]d−1×R a set of at most n points. For all grid points b ∈ [0 : F]d−1×R,
the nearest neighbors of each b in P can be computed in time O(n+ Ed−2F).

We now set γ =
√
ε/c for a constant c > 1 to be used in a much sparser

grid than with δ. Let C = [−2,+2]d and f be a facet of C. We draw a (d − 1)-
dimensional grid on f of size γ. Assuming f lies on the plane xd = −2, we choose
a set Bf = {(i1γ, . . . , id−1γ,−2) ∈ Zd | −d2/γe ≤ i1, . . . , id−1 ≤ d2/γe} of grid
points. For a subsetX ⊆ P and a point b, we define ψ(X, b) = arg minx∈X ‖x̂−b‖,
i.e., the point in X such that the snapped point is nearest to b. For a set R,
ψ(X,R) = {ψ(X, r) | r ∈ R}. There is a one to one mapping between the faces
of C and H, so we also use f to denote the corresponding facet of H. Let Lf be
the set of points chosen in the previous algorithm corresponding to facet f of
H for computing an (ε/2)-kernel of P . Set Gf = ψ(Lf , Bf). Chan showed that
G =

⋃
f∈C Gf is an (ε/2)-kernel of L and thus an ε-kernel of P . Scaling G and

Bf appropriately and using Lemma 5, Gf can be computed in O(n+ 1/εd−3/2)
time. Hence, G can be computed in O(n+ 1/εd−3/2) time.

Note that ψ(Lf , b) can be the same for many points b ∈ Bf , so insertion or
deletion of a point in P (and thus in Lf) may change Gf significantly, thereby
making G unstable. We circumvent this problem by introducing two new ideas.
First, ψ(Lf , Bf) is computed in two stages, and second it is computed in an
iterative manner. We describe the construction and the update algorithm for f ;
the same algorithm is repeated for all facets.

We partition H into O(1/γd−1) boxes: for J = 〈i1. . . . , id−1〉 ∈ [−1/γ, 1/γ]d−1

∩Zd−1, we define HJ = [i1γ, (i1 + 1)γ] × · · · × [id−1γ, (id−1 + 1)γ] × [−1,+1].
We maintain a subset X ⊆ Lf . Initially, we set X = Lf . Set XJ = X ∩HJ . We
define a total order on the points of Bf . Initially, we sort Bf in lexicographic
order, but the ordering will change as insertions and deletions are performed
on P . Let 〈b1, . . . , bu〉 be the current ordering of Bf . We define a map ϕ :
Bf → Lf as follows. Suppose ϕ(b1), . . . , ϕ(bi−1) have been defined. Let Ji =
arg minJ ‖ψ̂(XJ , bi) − bi‖; here ψ̂(·) denotes the snapped point of ψ(·). We set
ϕ(bi) = ψ(XJi

, bi). We delete ϕ(bi) from X (and from XJi
) and recompute

ψ̂(XJi
, Bf). Set Kf = {ϕ(b) | b ∈ Bf} and K =

⋃
f Kf . Computing Ji and

ϕ(bi) takes O(1/ε(d−1)/2) time, and, by Lemma 5, ψ(XJi
, Bf) can be computed

in O(|XJ |+ 1/γd−2 · 1/γ) = O(1/ε(d−1)/2) time.
It can be proved that the map ϕ and the set Kf satisfy the following prop-

erties:

(P1) ϕ(bi) 6= ϕ(bj) for i 6= j,
(P2) ϕ(bi) = ψ(Lf \ {ϕ(bj) | j < i}, bi),
(P3) Kf ⊇ ψ(Lf , Bf).

Indeed, (P1) and (P2) follow from the construction, and (P3) follows from (P2).
(P3) immediately implies that K is an ε-kernel of P . Next, we describe the
procedures for updating Kf when Lf changes. These procedures maintain (P1)–
(P3), thereby ensuring that the algorithm maintains an ε-kernel.

Inserting a point. Suppose a point p is inserted into Lf . We add p to X.
Suppose p ∈ HJ . We recompute ψ(XJ , Bf). Next, we update ϕ(·) and K as
follows. We maintain a point ξ ∈ Lf . Initially, ξ is set to p. Suppose we have
processed b1, . . . , bi−1. Let η ∈ Lf be the current ϕ(bi). If ‖ξ̂−bi‖ ≤ ‖η̂−bi‖, then
we swap ξ and ϕ(bi), otherwise neither ξ nor ϕ(bi) is updated. We then process
bi+1. After processing all points of Bf if ξ = p, i.e., no ϕ(bi) is updated, we stop.
Otherwise, we add p to Kf and delete ξ from Kf . The insertion procedure makes
at most two changes in Kf , and it can be verified that (P1)-(P3) are maintained.

Deleting a point. Suppose p is deleted from Lf . Suppose p ∈ HJ . If p 6∈ Kf ,
then p ∈ X. We delete p from X and XJ and recompute ψ(XJ , B). If p ∈ Kf ,
i.e., there is a bi ∈ B with p = ϕ(bi), then p 6∈ X. We delete p from Kf and K,
recompute ϕ(bi), and add the new ϕ(bi) to Kf . Let ϕ(bi) ∈ HJ ; we remove ϕ(bi)
from XJ and recompute ψ(XJ , Bf). We modify the ordering of Bf by moving
bi from its current position to the end. This is the only place where the ordering
of Bf is modified. Since bi is now the last point in the ordering of Bf , the new

ϕ(bi) does not affect any other ϕ(bj). The deletion procedure also makes at most
two changes in Kf and maintains (P1)–(P3).

Finally, insertion or deletion of a point in P causes at most one insertion plus
one deletion in Lf , therefore we can conclude the following:

Lemma 6. Let P be a set of n points in Rd, A a set of anchor points of P , and
0 < ε < 1 a parameter. P can be preprocessed in O(n+ 1/εd−1) time into a data
structure so that a stable ε-kernel of P with respect to A of size O(1/ε(d−1)/2)
can be maintained in O(1/ε(d−1)/2) time under insertion and deletion, provided
that A remains an anchor set of P .

Updating anchors. We now describe the algorithm for maintaining a stable ε-
kernel when anchors of P are no longer fixed and need to be updated dynamically.
Roughly speaking, we divide P into inner and outer subsets of points. The outer
subset acts as a shield so that a stable kernel of the inner subset with respect to a
fixed anchor can be maintained using Lemma 4 or 6. When the outer subset can
no longer act as a shield, we reconstruct the inner and outer sets and start the
algorithm again. We refer to the duration between two consecutive reconstruction
steps as an epoch. The algorithm maintains a stable kernel within each epoch, and
the amortized number of changes in the kernel because of reconstruction at the
beginning of a new epoch will be O(1). We can use a de-amortization technique
to make the ε-kernel stable across epochs. We now describe the algorithm in
detail.

In the beginning of each epoch, we perform the following preprocessing. Set
α = 1/10 and compute a α-kernel L of P of size O(log n) using Chan’s dynamic
algorithm; we do not need the stable version of his algorithm advertised above. L

can be updated in O(log n) time per insertion/deletion. We choose a parameter
m, which is set to 1/εd−1 or 1/ε(d−1)/2. We create the outer subset of P by
peeling off m “layers” of anchor points A1, . . . , Am. Initially, we set P0 = P .
Suppose we have constructed A0, . . . , Ai−1. Set Pi−1 = P \

⋃i−1
j=1Aj , and L is an

α-kernel of Pi−1. Next, we construct the anchor set Ai of L as described earlier
in this section. We set Pi = Pi−1 \ Ai and update L so that it is an α-kernel of
Pi. Let A =

⋃
iAi, A = Am, and PI = P \A. Let H = (1+α)IA. By construction

PI ⊂ H. A forms the outer subset and acts as a shield for PI , which is the inner
subset. Set δ = ε/(2(1 + α)(βd)2), where βd is the constant in Lemma 3.

If m = 1/εd−1 (resp. 1/ε(d−1)/2), we maintain a stable δ-kernel KI of PI with
respect to A of size O(m) using Lemma 4 (resp. Lemma 6). Set K = KI ∪ A;
|K| = O(m). We prove below that K is an ε-kernel of P . Let p be a point that
is inserted into or deleted from P . If p ∈ H, then we update KI using Lemma 4
or 6. On the other hand, if p lies outside H, we insert it into or delete it from A.
Once A has been updated m times, we end the current epoch and discard the
current K. We begin a new epoch and reconstruct A, PI , and KI as described
above.

The preprocessing step at the beginning of a new epoch causes O(m) changes
in K and there are at least m updates in each epoch, therefore the algorithm
maintains a stable kernel in the amortized sense. Again, using a de-amortization

technique, we can ensure that K is stable. The correctness of the algorithm
follows from the following lemma (proved in full version [3]).

Lemma 7. K is always an ε-kernel of P .

Using Lemmas 4 and 6, we can bound the amortized update time and con-
clude the following.

Lemma 8. For a set P of n points in Rd and a parameter 0 < ε < 1, there is
a data structure that can maintain a stable ε-kernel of P of size O(1/ε(d−1)/2)
under insertions and deletions in amortized time O(nε(d−1)/2 + 1/ε(d−1)/2 +
log n), or of size O(1/εd−1) in amortized time O(nεd−1 + log n+ log(1/ε)).

Putting it together. For a point set P ⊂ Rd of size n, we can produce the best
size and update time tradeoff for stable ε-kernels by invoking Lemma 2 to com-
pose three stable ε-kernel algorithms, as illustrated in Figure 2. We first apply
Lemma 1 to maintain a stable (ε/3)-kernel K1 of P of size O(min{n, (1/εd−1) ·
log n}) with update time O(log n). We then apply Lemma 8 to maintain a sta-
ble (ε/3)-kernel K2 of K1 of size O(1/εd−1) with update time O(|K1|εd−1 +
log |K1| + log(1/ε)) = O(log n + log(1/ε)). Finally we apply Lemma 8 again to
maintain a stable (ε/3)-kernel K of K2 of size O(1/ε(d−1)/2) with update time
O(|K2|ε(d−1)/2 +1/ε(d−1)/2 +log |K2|) = O(1/ε(d−1)/2). K is a stable ε-kernel of
P of size O(1/ε(d−1)/2) with update time O(log n+ 1/ε(d−1)/2). This completes
the proof of Theorem 1.

K

1/ε(d−1)/2

K1

log(n)/εd−1

K2

1/εd−1

log n

n

P log n 1/ε(d−1)/2

Fig. 2. Composing stable ε-kernel algorithms.

3 Approximation Stability

In this section we prove the upper bound in Theorem 2. Due to lack of space we
only prove the upper bound for d = 2, 3; the remainder is in the full version [3].

By [1], it suffices to consider the case in which P is fat and the diameter of P is
normalized to 1. Let K be an ε-kernel of P of the smallest size. Let P = conv(K),
and Pε = P ⊕ εBd. We have P ⊆ conv(P) ⊆ Pε by the definition of ε-kernels.
It suffices to show that there is a set K ′ ⊆ P such that for P′ = conv(K ′),
P′ ⊆ conv(P) ⊆ P′ε/2, and |K ′| = O(|K|bd/2c logd−2(1/ε)) [1].

For convenience, we assume that K ′ is not necessarily a subset of points
in P ; instead, we only require K ′ to be a subset of points in conv(P). By
Caratheodory’s theorem, for each point x ∈ K, we can choose a set Px ⊆ P
of at most d+ 1 points such that x ∈ conv(Px). We set

⋃
x∈K′ Px as the desired

(ε/2)-kernel of P ; |
⋃
x∈K′ Px| ≤ (d+ 1)|K ′| = O(κ(P, ε)bd/2c logd−2(1/ε)).

Initially, we add a point into K ′ for each point in K. If p ∈ K lies on
∂ conv(P), we add p to K ′. Otherwise we project p onto ∂ conv(P) in a direction
in which p is maximal in K and add the projected point to K ′. Abusing the
notation slightly, we use P to denote hull of these initial points. For simplicity,
we assume P to be a simplicial polytope.

Decomposition of Pε \ intr P. There are d types of simplices on ∂P. In R2

these are points and edges. In R3 these are points, edges, and triangles. We can
decompose Pε \ intr P into a set of regions, each region σ(f) corresponding to a
simplex f in P. For each simplex f in P let f∗ ⊆ Sd−1 denote the dual of f in
the Gaussian diagram of P. Recall that if f has dimension k (0 ≤ k ≤ d − 1),
then f∗ has dimension d − 1 − k. The region Pε \ intr P is partitioned into a
collection of |P| regions (where |P| is the number of faces of all dimensions in
P). Each simplex f in P corresponds to a region defined

σ(f) = {f + zu | 0 ≤ z ≤ ε, u ∈ f∗}.

For a subsimplex τ ∈ f , we can similarly define a region σ(τ) = {τ + zu | 0 ≤
z ≤ ε, u ∈ f∗}. In R2, there are two types of regions: point regions and edge
regions. In R3, there are three types of regions: point regions (see Figure 4(a)),
edge regions (see Figure 4(b)), and triangle regions (see Figure 4(c)).

For convenience, for any point q = q̄+z ·u ∈ σ(f), where q̄ ∈ f, 0 ≤ z ≤ ε, and
u ∈ f∗, we write q = q̄[u, z] (which intuitively reads, the point whose projection
onto f is q̄ and which is at a distance z above f in direction u). We also write
q[v] = q̄ + z · v (intuitively, q[v] is obtained by rotating q w.r.t. f from direction
u to direction v). Similarly, we write a simplex ∆̄[u, z] = ∆̄⊕ z · u, where ∆̄ is a
simplex inside f , 0 ≤ z ≤ ε, and u ∈ f∗, and write ∆[v] = ∆̄⊕ z · v.

We will proceed to prove the upper bound as follows. For each type of region
σ(f) we place a bounded number of points from σ(f)∩conv(P) into K ′ and then
prove that all points in σ(f)∩conv(P) are within a distance ε/2 from some point
in P′ = conv(K ′). We begin by introducing three ways of “gridding” σ(f) and
then use these techniques to directly prove results for several base cases, which
illustrate the main conceptual ideas. These base cases will already be enough to
prove the results in R2 and R3. In the full version [3] we generalize this to Rd
using an involved recursive construction. We set a few global values: δ = ε/12d,
θ = 2 arcsin(δ/2ε), and ρ = δ/ε.

1: Creating layers. For a point q = q̄[u, z] ∈ σ(f) we classify it depending on
the value z = |q − q̄|. If z ≤ ε/2, then q is already within ε/2 of P. We then
divide the range [ε/2, ε] into a constant H = (ε/2)/δ number of cases using
H = {h1 = ε/2, h2 = ε/2 + δ, . . . , hH = ε− δ}. If z ∈ [hi, hi+1), then we set
qhi = q̄[u, hi]. We define Ψf,hi ⊂ σ(f) ∩ conv(P) to be the set of points that
are a distance exactly hi from f .

2: Discretize angles. We create a constant size θ-net Uf,h = {u1, u2, . . .} ⊂ f∗
of directions with the following properties. (1) For each q = q̄[u, h] ∈ Ψf,h
there is a direction ui ∈ Uf,h such that the angle between u and ui is at
most θ. (2) For each ui ∈ Uf,h there is a point pi = p̄i[ui, h] ∈ Ψf,h; let
Nf,h = {pi | i ≥ 1}. Uf,h is constructed by first taking a (θ/2)-net Uf of
f∗, then for each u′i ∈ Uf choosing a point pi = q̄i[ui, h] ∈ Ψf,h where ui is
within an angle θ/2 of u′i (if one exists), and finally placing ui in Uf,h.

3: Exponential grid. Define a set D = {d0, d1 = (1 + ρ)d0, . . . , dm = (1 +
ρ)md0} of distances where dm < 1 and d0 = δ, so m = O(log 1/ε). For a

face f ∈ P, let any r ∈ σ(f) be called a support point of f . Let p1, . . . , pk
be the vertices of the k-simplex f . For each pj , and each di ∈ D (where
di < ||pj − r̄||), let pj,i be the point at distance di from pj on the segment
pj r̄. For each boundary facet F of f , define a sequence of at most m simplices
F0, F1, . . . ∈ conv(F ∪ r̄), each a homothet of F , so the vertices of Fi lie on
segments pj r̄ where pj ∈ ∂F (see Figure 5(a)). The translation of each Fi
is defined so it intersects a point pj,i (where pj ∈ ∂F) and is as close to F
as possible. This set of (k − 1)-simplices for each F defines the exponential
grid Gr,f . The full grid structure is revealed as this is applied recursively on
each Fi.
The exponential grid Gr,∆ on a simplex ∆ has two important properties for
a point q ∈ ∆:

(G1) If q ∈ conv(F ∩ r̄) lies between boundary facet F and F0, let q0 be the
intersection of the line segment qr̄ with F0; then ||q − q0|| ≤ d0 = δ.

(G2) If q ∈ conv(F ∩ r̄) lies between Fi−1 and Fi and the segment qr̄ intersects
Fi at qi, let qF be the intersection of F with the ray−→rq; then ||qi−q||/||qi−
qF || ≤ ρ = δ/ε.

We now describe how to handle certain simple types of regions: where f is
a point or an edge. These will be handled the same regardless of the dimension
of the problem, and they (the edge case in particular) will be used as important
base cases for higher dimensional problems.

Point regions. Consider a point region σ(p). For each h ∈ H create θ-net Up,h
for Ψp,h, so Np,h are the corresponding points where each pi = p[h, ui] ∈ Np,h
has ui ∈ Up,h. Put each Np,h in K ′.

q̄ = p
θ

qh

q′
qFor any point q = q̄[u′, z] ∈ σ(p)∩conv(P), let q′ = q̄[u, h] where

h ∈ H is the largest value such that h ≤ z and u ∈ Up,h is the closest
direction to u′; set qh = q̄[u′, h] = q′[u′]. First ||q− qh|| ≤ δ because
z − h ≤ δ. Second ||qh − q′|| ≤ δ because the angle between u′

and u is at most θ, and they are rotated about the point p. Thus
||q − q′|| ≤ ||q − qh||+ ||qh − q′|| ≤ 2δ ≤ ε/2.

Lemma 9. For a point region σ(p), there exists a constant number
of points Kp ⊂ σ(p)∩ conv(P) such that all points q ∈ σ(p)∩ conv(P) are within
a distance ε/2 of conv(Kp).

Edge regions. Consider an edge region σ(e) for an edge e of P. Orient e along
the x-axis. For each h ∈ H and u ∈ Ue,h, let Ψe,h,u be the set of points in Ψe,h
within an angle θ of u. For each Ψe,h,u, we add to Ke the (two) points of Ψe,h,u
with the largest and smallest x-coordinates, denoted by p+

h,u and p−h,u.
For any point q = q̄[v, z] ∈ σ(e) ∩ conv(P), there is a point q′′ = q̄[u, h] such

that h ∈ H is the largest value less than z and u ∈ Ue,h is the closest direction to
v. Furthermore, ||q−q′′|| ≤ ||q−qh||+||qh−q′′|| ≤ (z−h)+2ε sin(θ/2) = δ+δ = 2δ.
We can also argue that there is a point q′ = q̄[u′, z′] ∈ p−h,up

+
h,u, because if q̄ has

smaller x-coordinate than p̄−h,u or larger x-coordinate than p̄+
h,u, then q′ cannot

be in Ψe,h,u. Clearly the angle between u and u′ is less than θ. This also implies
that h− z′ < δ. Thus ||q′′ − q′|| ≤ 2δ, implying ||q − q′|| ≤ 4δ ≤ ε/2.

h

e

u

p−h,u

p+
h,u

qh

q′
Ψe,h,u

q′′

(a) σ(e) in R3 (b) top view of σ(e) at height h

Fig. 3. Illustration of 2 points in K′ for edge case with specific h ∈ H and u ∈ Ue,h,θ.

Lemma 10. For an edge region σ(e), there exists O(1) points Ke ⊂ σ(e) ∩
conv(P) such that for any point q = q̄[z, v] ∈ σ(e) ∩ conv(P) there is a point
p = q̄[h, u] ∈ conv(Ke) such that z − h ≤ 2δ, ||v − u|| ≤ 2δ, and, in particular,
||q − p|| ≤ 4δ ≤ ε/2.

For K ⊂ P ∈ R2 there are |K| points and edges in P. Thus combining
Lemmas 9 and 10 |K ′|/|K| = O(1) and we have proven Theorem 2 for d = 2.
Next, we prove the theorem for d = 3.

Construction of K ′. Now consider K ⊂ P ∈ R3 and the point regions, edge
regions, and triangle regions in the decomposition of Pε \ intr P (see Figure 4).
By Lemmas 9 and 10 we can add O(|K|) points to K ′ to account for all point
and edge regions. We can now focus on the O(|K|) triangle regions.

f

ε
f

ε f
ε

(a) f is a vertex of P (b) f is an edge of P (c) f is a facet of P

Fig. 4. Illustration of regions in the partition of Pε \ intr P in three dimensions.

Consider a triangle region σ(t) for a triangle t in P (see Figure 5(a)), t∗

consists of a single direction, the one normal to t. Let r be the highest point of
σ(t)∩conv(P) in direction t∗. We add r to K ′ and we create an exponential grid
Gr,t with r as the support point. For each edge e ∈ Gr,t and h ∈ H we add the
intersection of e[t∗, h] with the boundary of σ(t) ∩ conv(P) to K ′, as shown in
Figure 5(b). Thus, in total we add O(|K| log(1/ε)) points to K ′.

Proof of correctness. Consider any point q = q̄[t∗, z] ∈ σ(t) ∩ conv(P) and
associate it with a boundary edge e of t such that q̄ ∈ conv(e∪r̄). Let qh = q̄[t∗, h]
where h ∈ H is the largest height such that h ≤ z. If segment q̄r̄ does not
intersect any edge ei parallel to e in Gr,t, let p̄ = r̄. Otherwise, let ei be the
first segment parallel to e in Gr,t intersected by the ray −→̄qr̄, and let p̄ be the
intersection. Let p = p̄[t∗, h] which must be in conv(K ′) by construction. If
ei = e0, then by (G1) we have ||qh − p|| = ||q̄− p̄|| ≤ δ, thus ||q− p|| ≤ 2δ ≤ ε/2
and we are done. Otherwise, let q̄e be the intersection of e with ray −→̄rq̄. By (G2)
||p̄− q̄||/||p̄− q̄e|| ≤ ρ = δ/ε. Thus, q′′ = q̄[t∗, h−ερ] is below the segment q̄ep (see

e = F

r̄
p1

p2

p3

r

r̄

r

e

r

q̄e

q

qh

r̄

h

p
q′′

(a) σ(t) with r and Gr,t (b) Subtriangle te of σ(t) (c) Slice of (b) through r, q

Fig. 5. Illustration to aid correctness of approximation of triangle regions in R3.

Figure 5(c)) and thus q′′ ∈ conv(K ′) since triangle pp̄q̄e is in conv(K ′). Finally,
||q − q′′|| = ||q − qh||+ ||qh − q′′|| ≤ 2δ ≤ ε/2. This proves Theorem 2 for d = 3.

3.1 Remarks

(1) For d = 2, 3, κ(P, ε/2) is only a factor of O(1) and O(log(1/ε)), respectively,
larger than κ(P, ε); therefore, the sizes of optimal ε-kernels in these dimen-
sions are relative stable. However, for d ≥ 4, the stability drastically reduces
in the worst case because of the superlinear dependency on κ(P, ε).

(2) Neither the upper nor the lower bound in the theorem is tight. For d = 3,
we can prove a tighter lower bound of Ω

(
κ(P, ε) log(1/(ε · κ(P, ε)))

)
. We

conjecture in Rd that

κ(P, ε/2) = Θ
(
κ(P, ε)bd/2c logd−2(1/(ε(d−1)/2 · κ(P, ε)))

)
.

References

1. P. K. Agarwal, S. Har-Peled, and K. Varadarajan, Approximating extent measure
of points, Journal of ACM, 51 (2004), 606–635.

2. P. K. Agarwal, S. Har-Peled, and K. Varadarajan, Geometric approximations via
coresets, in: Combinatorial and Computational Geometry, 2005, pp. 1–31.

3. P. K. Agarwal, J. M. Phillips, and H. Yu. Stability of ε-kernels. arXiv:1003.5874.
4. P. K. Agarwal and H. Yu, A space-optimal data-stream algorithm for coresets in

the plane, SoCG, 2007, pp. 1–10.
5. G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume

bounding box of a point set in three dimensions, Journ. of Algs, 38 (2001), 91–109.
6. T. Chan, Faster core-set constructions and data-stream algorithms in fixed dimen-

sions, Computational Geometry: Theory and Applications, 35 (2006), 20–35.
7. T. Chan, Dynamic coresets, SoCG, 2008, pp. 1–9.
8. S. Har-Peled, Approximation Algorithm in Geometry (Chapter 22),

http://valis.cs.uiuc.edu/˜sariel/teach/notes/aprx/, 2010.
9. J. Hershberger and S. Suri, Adaptive sampling for geometric problems over data

streams, Computational Geometry: Theory and Applications, 39 (2008), 191–208.
10. H. Yu, P. K. Agarwal, R. Poreddy, and K. Varadarajan, Practical methods for

shape fitting and kinetic data structures using coresets, Algorithmica, 52 (2008).
11. H. Zarrabi-Zadeh, An almost space-optimal streaming algorithm for coresets in

fixed dimensions, ESA, 2008, pp. 817–829.

