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Abstract

For many problems in data analysis, the natural way to model objects is as a probability distribution
over a finite and discrete domain. Probability distributions over such domains can be represented as
points on a (high-dimensional) simplex, and thus many inference questions involving distributions can
be viewed geometrically as manipulating points on a simplex. The dimensionality of these points makes
analysis difficult, and thus a key goal is to reduce the dimensionality of the data while still preserving the
distributional structure.

In this paper, we propose an algorithm for dimensionality reduction on the simplex,mapping a set
of high-dimensional distributions to a space of lower-dimensional distributions, whilst approximately
preserving the pairwise Hellinger distance between distributions. By introducing a restriction on the
input data to distributions that are in some sense quite smooth, we can map n points on the d-simplex to
the simplex of O(ε−2 logn) dimensions with ε-distortion with high probability. Our techniques rely on
classical Johnson and Lindenstrauss dimensionality reduction methods for Euclidean point sets and require
the same number of random bits as non-sparse methods proposed by Achlioptas for database-friendly
dimensionality reduction.

1 Introduction

In many applications, data is represented natively not as a vector in a normed space, but as a distribution
over a finite and discrete support. A document (or even a topic) is represented as a distribution over
words [27, 21, 9], an image is represented as distribution over scale-invariant fingerprints [25, 12], and audio
signals are represented as distributions over frequencies [16]. This probabilistic view of the data is important
for learning and inference, as well as information-theoretic approaches to data mining.

These distributions are defined over very large supports – a document vector might have hundreds of
dimensions corresponding to different words in a vocabulary. This high dimensionality poses the usual
challenges for data analysis, and dimensionality reduction is a standard tool one might apply in order to
process the data feasibly.

However, traditional dimensionality reduction cannot be applied in these settings for two reasons. First, the
distributional structure of the data must be preserved. Techniques like the Johnson-Lindenstrauss transform,
or more general metric embedding methods, can be used to embed high dimensional vectors in a Euclidean
space (or a normed space in general). However, they do not ensure that the resulting objects are also
probability distributions. This is important because the inference procedures we wish to apply (Bayesian
methods, or information-theoretic analysis) heavily utilize the distributional nature of the data in addition to
its metric structure, and losing the former renders these procedures invalid. Secondly, the natural distance
measures used to compare distributions are not the traditional `p-induced distances. Rather, they are either
the non-metric Bregman divergences, or (the object of study here), distances like the Hellinger distance,
which can be interpreted statistically as capturing the information distance between probability distributions.

A probability distribution over finite support can be represented as a point on a (high-dimensional) simplex.
Thus, the problem of dimensionality reduction for distributions can be phrased as the problem of doing
dimensionality reduction on the simplex under the Hellinger distance. This is the problem we study in this
paper.
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1.1 Background

Metric embeddings and dimensionality reduction are crucial tools in the understanding of high dimensional
data and have been objects of intense study for nearly two decades in theoretical computer science [17].
In particular, dimensionality reduction in Euclidean spaces has been studied and applied not just in the
algorithms community, but also in machine learning, computer vision, and natural language processing. The
Johnson-Lindenstrauss lemma [22] is the prototype for the result we prove in this paper; it was originally
shown for finite subsets of a Hilbert space, and in addition to admitting multiple proofs, has also been
extended to the sphere [2], as well as general manifolds [11, 7, 3]. Structure-preserving embeddings have
also been studied. For example, there are results on embedding (shortest path metrics on) graphs of large
genus onto graphs of small genus (or even planar graphs) [20, 10, 28].

Dimensionality reduction techniques for information distances have received little attention. Since the
Hellinger distance maps isometrically into an `2 space (see Section 2), it is easy [8] to embed the simplex
with Hellinger distance in a low-dimensional Euclidean space. However this embedding cannot be directly
used to obtain a mapping to a low-dimensional simplex.

1.2 Overview and Paper Outline

Dimensionality reduction on the simplex can be reduced to a different question that itself is of interest:
“Given a collection of points in the positive orthant of Rd , embed them into the positive orthant of Rk,k� d”.
Traditional dimensionality reduction proceeds by constructing a random projection from Rd to Rk. This
projection can be constructed in many different ways [23, 24, 26, 1, 18, 13, 6, 5, 4, 15, 13, 14], but a key
feature is that it is expansive, spreading points all over the lower dimensional space. It turns out that this
expansivity (captured by the fact that coordinates of the resulting points must be permitted to take both
positive and negative values) is critical to guaranteeing an unbiased estimator of the distance (which in turn
then yields a low-dimensional embedding via probability amplification).

When we move to the positive orthant, it is no longer clear how to achieve the twin goals of unbiasedness
and “non-expansivity”. Simple ideas like truncation or wrap-arounds introduce bias that is hard to analyze.
Further, by work of Matousek[26] and Naor and Indyk[19], it is know that any family of projections that
preserves distances must satisfy strong higher moment properties. Our solution is a compromise. We define a
family that by construction guarantees positivity and that admits the “right” higher moment behavior using a
delicate geometric argument. The price we pay is that the approach must be restricted to points that lie in an
interior region of the simplex.

We lay out basic definitions in the next section. Theorem 3.1 is our main result on dimensionality reduction
for the simplex and is presented in Section 3. Underpinning this result is a key lemma (Lemma 3.4) that
characterizes the behavior of the family of projections from high-dimensional to low-dimensional positive
orthants. We state this lemma and use it in Section 3, and prove it in Section 4.

2 Definitions

The (d-1)-dimensional simplex ∆d−1 ⊂ Rd is the set of all points {(x1, . . . ,xd) | ∑xi = 1,xi ≥ 0}. The
(d-1)-dimensional unit sphere Sd−1 ⊂ Rd is the set of all points {(x1, . . .xd) | ∑x2

i = 1}. For notational
convenience, we will use ∆ and S to denote the simplex and unit sphere respectively when the dimension is
either irrelevant or implied. We will also use Rd

+ to denote the positive orthant of Rd , i.e the set of all points
{(x1, . . .xd) | xi ≥ 0}. Let Sd−1

+ = Sd−1∩Rd
+. The Hellinger distance dH : ∆×∆→ R+ is a commonly used

distance measure between distributions, defined as

dH(p,q)2 = ∑
i
(
√

pi−
√

qi)2.
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Figure 1: Illustration of ∆2, B3, I3.

There is a natural mapping between ∆d−1 and Sd−1
+ , which also

establishes a connection between the Hellinger distance and Eu-
clidean distance. Let the map h : ∆d−1 → Sd−1 be defined by
h(p1, . . . , pd) = (

√
p1, . . . ,

√
pd). By construction, h(p) is a point

on Sd−1
+ . Further, h is a bijection between ∆d−1 and Sd+ since

it has an inverse h−1 : Sd−1
+ → ∆d−1 given by h−1(q1, . . . ,qd) =

(q2
1, . . . ,q

2
d).

Inner region and possible basis set. We refer to the point
xc =

(
1√
d
, . . . , 1√

d

)
as the center point of the positive orthant. Note

that xc lies on Sd−1
+ .

Let θo be the angle from vxc to a basis vector with the ith coor-
dinate being 1, ei = (0, . . . ,0,1,0, . . . ,0), i.e. ei is a basis vector in
the standard orthonormal basis of Rd . Thus, cosθo = xc · ei = 1√

d
.

Call the set of unit vectors at angle θo to xc the possible basis set,
which we denote Bd ⊂ Rd .

Let e′i be the opposing vector to ei, given by e′i = 1√
d−1 ∑ j 6=i e j

and let the angle θIR be the angle from xc to some e′i, so that cosθIR = xc · e′i = (d−1) · 1√
d
· 1√

d−1
=
√

d−1
d .

The inner region Id ⊂ Sd−1
+ is the set of all unit vectors of angle θIR or less to xc. We also call all points

p ∈ ∆d−1 that correspond to vectors vp at angle at most θIR from xc the inner region of the simplex and denote
the set as I(∆d−1); these are in general not unit vectors.

Both the boundary of the inner region Id and the possible basis Bd have the shape of a lower-dimensional
sphere, as given by the following lemma.

Lemma 2.1. Let u ∈ Sd−1 be a vector. The set X ⊂ Sd−1 of vectors at angle θ to u forms a sphere of
dimension d−2 and radius sinθ in the subspace orthogonal to u.

Proof. Let u and r be unit vectors with angle θ between them. The dot product does not depend on the
orientation of the basis used to give the coordinates of the vectors, so w.l.o.g. we can chose any orthonormal
basis such that u = (1,0, . . . ,0) and r = (r1, . . . ,rn). Thus in this basis we have cosθ = u ·r = r1. Since r is a
unit vector, we know that r2

1 + . . .+ r2
n = 1, so r2

2 + . . .+ r2
n = 1− cos2 θ = sin2

θ . So coordinates r2 through
rn obey the equation of an (d-2)-sphere of radius sinθ .

Distortion. One last definition is necessary before we start looking at results. We use this to express the
degree of distortion on a set of points mapped from one space to another. Let P⊂ X be a set of points in a
metric space (X ,dX). Let f : X →Y be a map to another metric space (Y,dY ). We say that Q = { f (p)|p ∈ P}
has ε-distortion if there exists a constant c such that

∀p, p′ ∈ P (1− ε)dY ( f (p), f (p′)) ≤ c ·dX(p, p′) ≤ (1+ ε)dY ( f (p), f (p′)). (2.1)

Our main theorem will be about metric spaces using Hellinger distance dH , but all intermediate results will

be with respect to the Euclidean distance dE defined as dE(p,q) =
√

∑
d
i=1(pi−qi)2.

3 Main Results

In this section, we establish the main result of this paper.
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Theorem 3.1. Let P⊂ I(∆d−1) be a set of n points in metric space (∆d−1,dH). For constants 0 < ε < 2 and
0 < δ < 1 and integer k = O

(
1
ε2 ln

( n
δ

))
, there exists a set of maps G such that when g : ∆d−1→ ∆k−1 ∈ G is

picked uniformly from G, the image of P under g has ε-distortion in (∆k−1,dH) with probability at least 1−δ .

3.1 Overview Of Proof

The construction of the family G proceeds in four steps. First, points are mapped from ∆d−1 to Sd−1 via the
mapping h. Note that the resulting points lie in Rd

+. In the second step, we (randomly) construct a mapping
f that projects the points from Rd+1

+ to Rk+1
+ . Third, these points are then projected onto Sk−1 using the

normalization S(p) = p
‖p‖ . Finally, since the points now lie on Sk−1

+ , we can apply the inverse mapping h−1 to
the simplex ∆k−1. The overall mapping is thus the composition g = h−1 ◦S◦ f ◦h.

The mappings h and h−1 are isometric and introduce no distortion on the distances. The following lemma
shows that under the assumption that f only introduces ε distortion, the mapping S introduces only a small
overall distortion.

Lemma 3.1. For P ∈ Sd−1 ⊂ Rd and 0 ≤ ε ≤ 1/2, let π : Rd → Rk be an (ε/4)-distortion embedding of
(P∪{0},dE). Then ψ = S◦π : Sd−1→ Sk−1 has ε-distortion on (P,dE).

Proof. For all p, p′ ∈ P, the maximum value of ||ψ(p)−ψ(p′)|| occurs when ||π(p)|| and ||π(p′)|| are as
small as possible and ||π(p)−π(p′)|| is as large as possible [2]. Similarly, the smallest value of ||ψ(p)−
ψ(p′)|| occurs when ||π(p)|| and ||π(p′)|| are as large as possible and ||π(p)−π(p′)|| is as small as possible.
Thus

(1− ε/2)‖p− p′‖ ≤ 1− ε/4
1+ ε/4

‖p− p′‖ ≤ ‖ψ(p)−ψ(p′)‖ ≤ 1+ ε/4
1− ε/4

‖p− p′‖ ≤ (1+ ε)‖p− p′‖.

The first and last inequality follow by 1−2α ≤ 1−α

1+α
and from 1+α

1−α
≤ 1+4α , respectively, for 0 < α < 1/2

and setting α = ε/4. These are easily proven by showing that 1+α

1−α
is a convex function in α which intersects

the line 1+2α only at α = 0 and the line 1+4α at α = 0 and α = 1/2.

3.2 Projections that preserve positivity

To complete the proof of Theorem 3.1, we need to construct a mapping f : Rd
+→ Rk

+ that has ε-distortion
under dE . Our strategy is to pick k random vectors r1, . . . ,rk from some distribution over Bd , and define the

map f : Rd → Rk by f (v) =
√

d
k (v · r1, . . . ,v · rk). This strategy is justified by the following lemma.

Lemma 3.2. The angle between any v ∈ Bd and any vector u ∈ Id is at most π/2.

Proof. The center point does not change with a rotation of the orthonormal basis about xc; Bd and Id are also
invariant. Thus, w.l.o.g. consider e1 = v, rather than a general vector from Bd . The angle between e1 and
e′1 is π/2 since e1 · e′1 = 0. The set of all vectors t that have angle with e1 less than or equal to π/2 form a
hemisphere (hemihypersphere), and the positive orthant Sd−1

+ is contained in this hemisphere; see Figure 1.
Since Id ⊂ Sd−1

+ , this concludes the proof.

Lemma 3.2 proves that if u ∈ Id , then f (u) ∈ Rk
+, since every dot product v · ri will be non-negative. This

will lead us to a proof of the following theorem:

Theorem 3.2. Let P⊂Rd be an arbitrary set of n points. For any 0 < ε < 1/2 and 0 < δ < 1 and for integer
k ≥ O

(
1
ε2 ln

( n
δ

))
, there exists a set of maps F such that when f : Rd → Rk ∈ F is picked uniformly from F,

the image of P under f has ε-distortion with probability at least 1−δ .
Furthermore, for any point p ∈ Id ⊂ Rd

+, then f (p) ∈ Rk
+.
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To prove this, we use the following two lemmas. Lemma 3.3 is based heavily on a lemma by Achlioptas [1,
Lemma 5.1]; we state it in a slightly more general form, and for the lower bound we simplify the proof a
little using techniques developed by Matousek [26]. The upper bound proof remains unchanged. The proof
of Lemma 3.3 can be found in Appendix A.

Lemma 3.3. Let T D= N(0,1/d) (normally distributed with 1/d standard deviation) and let r be a random
vector which for any unit vector u ∈ Rd satisfies E

[
(u · r)2

]
= 1

d and for integer m≥ 2

E
[
(u · r)2m

]
≤ E

[
T 2m

]
= (2m−1)!!/dm,

where (2m−1)!! = (2m)!
m!2m is the double factorial. Pick k random, independently distributed vectors r1, . . .rk

from some distribution satisfying this condition, and define the map f : Rd → Rk by f (v) =
√

d
k (v · r1, . . . ,v ·

rk). Then for 0 < ε < 1/2

Pr
[
|| f (v)||2 < (1− ε)||v||2

]
≤ exp

(
−k

2

(
ε2

2
− ε3

3

))

and

Pr
[
|| f (v)||2 > (1+ ε)||v||2

]
≤ exp

(
−k

2

(
ε2

2
− ε3

3

))
.

The key lemma in this paper shows how to construct a distribution over the possible basis set that satisfies
the requirements of Lemma 3.3. An orthonormal basis where xc = (1,0,0, . . .0) (not the standard basis of
Rd) is called a central basis.

Lemma 3.4. In a central basis we define a random vector r =
(

cosθo,sinθo · X2√
d−1

, . . .,sinθo · Xd√
d−1

)
, where

the Xi are i.i.d. from {−1,+1}. The vector r ∈ Bd and for any unit vector u ∈ Rd satisfies E
[
(u · r)2 ·d

]
= 1

and for integer m≥ 2

E
[
(u · r)2m

]
≤ E

[
T 2m

]
= (2m−1)!!/dm.

The proof of this lemma is delicate, requiring a careful balancing of moments. It is proved in Section 4.
We now show how the above lemmas can be used to prove Theorem 3.2 by a straightforward application of
the tail bounds given in Lemma 3.3.

Proof of Theorem 3.2. Take r to be a random vector as defined in Lemma 3.4 and let the map f : Rd → Rk

be defined as in lemma 3.3 using this r. Since r ∈ Bd , if a vector v ∈ Id , then for each ri of f , v · ri ≥ 0.
Consequently, any point p ∈ Id ⊂ Rd is mapped to Rk

+ by f .
Also, by lemma 3.3, we can bound the probability that equation 2.1 does not hold for all pairwise distances

by using a trivial union bound over the pairwise distance vectors. There are
(n

2

)
such vectors, and the total

probability that 2.1 fails should be at most δ . Hence(
n
2

)
·2exp

(
−k

2

(
ε2

2
− ε3

3

))
≤ 2n2 exp

(
−kε2

12

)
≤ δ

Setting k = (12/ε2) ln(2n2/δ ) = O((1/ε2) ln(n/δ )) completes the proof.
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3.3 Putting It All Together

Assembling all the pieces, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Let ε ′ = ε/4. Thus, when 0 < ε < 2, we get 0 < ε ′ < 1/2. Thus by Theorem 3.2
there exists constants such that for integer k where

k ≥ O

(
1

(ε ′)2 ln
(

n+1
δ

))
= O

(
1
ε2 ln

(
n
δ

))
,

the image of h(P)∪{0} under f : ∆d−1→ Rk has ε/4-distortion with probability 1− δ , since h does not
give any distortion. This in turn implies that the distortion of P under S ◦ f ◦h is at most ε with the same
probability by Lemma 3.1. Since h maps points from I(∆d−1) to Id , and f maps points in Id to Rk

+, and S does
not change the sign of any coordinates of a vector, we see that S ◦ f ◦h maps points from I(∆d−1) to Sk−1

+ .
Hence, image of P under S ◦ f ◦ h lies in the domain of h−1 and so h−1 ◦ S ◦ f ◦ h : I(∆d−1)→ ∆k−1 maps
points from the inner region of the (d−1)-simplex I(∆d−1) to the (k−1)-simplex ∆k−1, and has ε-distortion
with probability at least 1−δ .

4 Moment Bounds

In this section, we prove lemma 3.4. Before doing so, we consider the motivation behind the construction of
the random vector used in the lemma. The central basis lets us decompose the space Rd as one dimension
parallel to xc and an orthogonal (d−1)-dimensional subspace. By generating random unit vectors in this
subspace, we can construct random unit vectors in the possible basis set Bd very easily, and given our
particular choice of θo, this construction has a very nice property, as expressed in the following lemma.

Lemma 4.1. If r′ = (r1, . . .rd−1) is a random unit vector in the subspace V orthogonal to xc, then r =
(cosθo,sinθor1, . . . ,sinθord−1) is a random unit vector in Bd . For any unit vector u′ ∈ V , if E [u′ · r′] = 0
and E

[
(u′ · r′)2

]
= 1

d−1 , then for an u ∈ Sd−1 E
[
(u · r)2

]
= 1

d .

Proof. The first statement is true, since r · xc = cosθo and ||r||2 = 1. For the second statement, note that
for some γ any unit vector u = (u1,u2, . . . ,ud) can be rewritten as u = (cosγ,sinγu′1, . . . ,sinγu′d−1) where
u′ = (u′1, . . . ,u

′
d−1) is a unit vector in the subspace V orthogonal to xc. Hence

E
[
(u · r)2

]
=E

[(
cosθo cosγ + sinθo sinγ(u′ · r′)

)2
]

=E

( 1√
d

cosγ +

√
d−1

d
sinγ(u′ · r′)

)2


=
1
d

E
[(

cosγ +
√

d−1sinγ(u′ · r′)
)2
]

=
1
d

(
cos2

γ +(d−1)sin2
γ E
[
(u′ · r′)2

]
+2cosγ sinγ

√
d−1E

[
(u′ · r′)

])
=

1
d

(
cos2

γ +(d−1)sin2
γ

1
d−1

)
=

1
d

The condition E
[
(u′ · r′)2

]
= 1

d−1 is saying that (
√

d−1u′ · r′)2 is an unbiased estimator of ||u′||2 - and

lemma 4.1 then tells us that (
√

du · r)2 is an unbiased estimator of ||u||2. “Good behavior” in the subspace
thus gives “good behavior” in the entire space. The following lemma extends this to all even moments of the
dot product considered, and is one of the main technical results in this paper.
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Lemma 4.2. Define r′ and r as in Lemma 4.1. Let T ′ D= N(0, 1
d−1), and T D= N(0, 1

d ). For any positive integer
m and for any unit vector u′ in the subspace V such that u′ · r′ is symmetrically distributed about zero and
such that

E
[(

u′ · r′
)2m
]
≤ E

[
T ′2m

]
= (2m−1)!!

(
1

d−1

)m

,

then for any unit vector u ∈ Rd

E
[
(u · r)2m

]
≤ E

[
T 2m

]
= (2m−1)!!

1
dm .

Proof. For any γ we can expand

E
[
(u · r)2m

]
= E

[(
cosθo cosγ + sinθo sinγ(u′ · r′)

)2m
]

=
1

dm E
[(

cosγ +
√

d−1sinγ(u′ · r′)
)2m
]

=
1

dm E

[
2m

∑
i=0

(
2m
i

)
cos2m−i

γ(d−1)i/2 sini
γ(u′ · r′)i

]

=
1

dm

2m

∑
i=0

(
2m
i

)
cos2m−i

γ(d−1)i/2 sini
γE
[
(u′ · r′)i

]
=

1
dm

m

∑
j=0

(
2m
2 j

)
cos2(m− j)

γ sin2 j
γ(d−1) jE

[
(u′ · r′)2 j

]
(4.1)

≤ 1
dm

m

∑
j=0

(
2m
2 j

)
cos2(m− j)

γ sin2 j
γ · (2 j−1)!!.

In getting to line 4.1, we used that all the odd moments of u′ · r′ are zero to eliminate the terms with odd
i, since u′ · r′ is symmetrically distributed about zero. Our goal is now to show that this upper bound is in
turn upper bounded by E

[
T 2m

]
= (2m−1)!! 1

dm (this equality is a standard result), and that this value occurs
when γ = π/2. Let

g(m,γ) =
m

∑
j=0

(
2m
2 j

)
cos2(m− j)

γ sin2 j
γ(2 j−1)!! = E

[
(u · r) 2m

]
·dm.

First observe that all the powers of sines and cosines in this expression are even. This implies that the sign
of any sine or cosine factor has no effect on the value of the function, which in turn implies that the function
reaches both its maximum and minimum w.r.t. γ in the interval γ ∈ [0,π/2], since it ranges over the same
values in the intervals [π/2,π], [π,3π/2] and [3π/2,2π]. In the following it will be shown that ∂

∂γ
g(m,γ)

can be written as a sum of terms where every term has factor with both positive integer powers sinγ and cosγ

and a positive (integer) coefficient. In the range γ ∈ [0,π/2], every term in such a sum takes non-negative
values, and hence it can only be zero if every single term is zero. This implies that cosγ = 0 or sinγ = 0. But
in that case, these solutions must be the locations of the maxima and minima of g(m,γ). Hence the minimum
is g(m,0) = 1 and the maximum is g(m,π/2) = (2m−1)!!.

We now prove that ∂

∂γ
g(m,γ) has the claimed properties. Let g j(m,γ) =

(2m
2 j

)
cos2(m− j) γ sin2 j

γ(2 j−1)!!.
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Then

∂

∂γ
g j(m,γ) =

(
2m
2 j

)
(2 j−1)!!

∂

∂γ

(
cos2(m− j)

γ sin2 j
γ

)
=
(

2m
2 j

)
(2 j−1)!! (4.2)

·
(
−2(m− j)cos2(m− j)−1

γ sin2 j+1
γ +2 j cos2(m− j)+1

γ sin2 j−1
γ

)
For 0 < j < m, we see g j(m,γ) contributes a positive and a negative term to ∂

∂γ
g(m,γ). For j = 0, g j(m,γ)

contributes only a term with a negative coefficient, and for j = m, g j(m,γ) contributes only a positive term.
Let −A j be the negative term of ∂

∂γ
g j(m,γ) and B j the positive term. We now show that A j ≤ B j+1 for j < m.

A j ≤ B j+1(
2m
2 j

)
(2 j−1)!! ·2(m− j)cos2(m− j)−1

γ sin2 j+1
γ ≤

(
2m

2( j +1)

)
(2 j +1)!! ·2( j +1)cos2(m− j)−1

γ sin2 j+1
γ(

2m
2 j

)
(m− j) ≤

(
2m

2( j +1)

)
(2 j +1) · ( j +1)

(2m)!
(2 j)!(2(m− j))!

(m− j) ≤ (2m)!
(2 j +2)!(2(m− j)−2)!

(2 j +1) · ( j +1)

m− j
2(m− j) · (2(m− j)−1)

≤ (2 j +1) · ( j +1)
(2 j +2) · (2 j +1)

1
(2(m− j)−1)

≤ 1

1 ≤ m− j

j ≤ m−1

So A j ≤ B j+1 holds when j < m. Since Am = 0 and B0 = 0, this means that ∂

∂γ
g(m,γ) = ∑

m
j=0

∂

∂γ
g j(m,γ) =

∑
m−1
j=0 B j+1−A j. This proves the claim that ∂

∂γ
g(m,γ) can be written as a sum of terms where every term

has factor with both positive integer powers of sinγ and cosγ and a positive (integer) coefficient. Which
in turn proves that the maximum of g(m,γ) w.r.t. γ is (2m−1)!!, as described above. Thus E

[
(u · r) 2m

]
≤

(2m−1)!!/dm.

Finally, to prove Lemma 3.4, we need two lemmas by Achlioptas [1] which give us a distribution over the
subspace orthogonal to xc that satisfies the requirements of Lemmas 4.1 and 4.2.

Lemma 4.3. In the subspace V orthogonal to xc, define a random vector r′ = 1√
d−1

(X1, . . . ,Xd−1), where

the Xi are i.i.d. from {−1,+1}. Then r′ is always a unit vector, E [u′ · r′] = 0, and E
[
(u′ · r′)2

]
= 1

d−1 .

Proof. The vector r′ is always a unit vector, since ||r′||2 = 1
d−1 ∑

d−1
i=1 X2

i = 1. The other two claims are proven
in Achlioptas’ preliminary statements [1], equation (3) on p. 677 and equation (4) on p. 679. Notice that he
is considering a space of dimension d, but here the space is of dimension d−1.

Lemma 4.4. Let w = 1√
d−1

(1, . . . ,1) be a unit vector in the subspace V orthogonal to xc, i.e. with d-1

coordinates. Let T ′ D= N(0, 1
d−1). Define r′ as in Lemma 4.3. Then for every unit vector u′ ∈V , and for any

non-negative integer m
E
[
(u′ · r′)2m

]
≤ E

[
(w · r′)2m

]
≤ E

[
T ′2m

]
.
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Proof. The first inequality follows by Achlioptas’ [1] Lemma 6.1, and the second by his Lemma 6.2.

Finally, we may use the random vector defined in Lemma 4.3 to prove Lemma 3.4.

Proof of Lemma 3.4. Define r′ as in 4.3, and using this r′, define r as in Lemma 4.1. Then by Lemma 4.3, r′
satisfies the requirements of Lemma 4.1, so r is a random unit vector from Bd , and for any fixed unit vector
u ∈ Rd , we have E

[
(u · r)2

]
= 1

d . Also, by Lemma 4.4, r′ satisfies the requirements of Lemma 4.2, so for all
non-negative integer m

E
[
(u · r)2m

]
≤ E

[
T 2m

]
= (2m−1)!!

1
dm ,

and this completes the proof.
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A Proving tail bounds from moments

For the reader’s convenience we replicate the following proofs by Achlioptas [1]. The only difference is the
slightly more general statement of the proofs. The technical details are the same.

Proof of Lemma 3.3. First we prove the lower bound. We use essentially use the same proof as Achlioptas [1].
Let v be some fixed vector and ṽ = v/||v|, then

Pr
[
|| f (v)||2 < (1− ε)||v||2

]
=Pr

[
d
k

k

∑
i=1

(v · ri)
2 < (1− ε)

d

∑
j=1

v2
j

]

=Pr

[
d

k

∑
i=1

(ṽ · ri)
2 < k(1− ε)

]

=Pr

[
exp

{
λd

k

∑
i=1

(ṽ · ri)
2

}
< exp{λk (1− ε)}

]
,λ > 0

≤E

[
exp

{
−λd

k

∑
i=1

(ṽ · ri)
2

}]
eλk(1−ε) (A.1)

=E
[
exp
{
−λd (ṽ · r1)

2
}]k

eλk(1−ε)

≤E

[
1−λd (ṽ · r1)

2 +
λ 2d2 (ṽ · r1)

4

2

]k

eλk(1−ε) (A.2)

≤
(

1−λ +
3
2

λ
2
)k

eλk(1−ε). (A.3)

In line A.1, we used a standard Markov bound. In line A.2, we used that ex≤ 1+x+x2/2 for all x≤ 0 and that
−λd (ṽ · r1)

2 < 0. In line A.3, we used the assumption in the statement of the lemma that E
[
(ṽ · r1)

2
]

= 1/d

and E
[
(ṽ · r1)

2
]
≤ 3/d2. Next, we set λ = ε

2(1+ε) , which we can do since ε > 0. This gives

Pr
[
|| f (v)||2 < (1− ε)||v||2

]
≤

(
1− ε

2(1+ ε)
+

3
8

ε2

(1+ ε)2

)k

exp
(

kε(1− ε)
2(1+ ε)

)
.

Finally, a comparison of power series shows that for ε ≤ 1/2, we get

Pr
[
|| f (v)||2 < (1− ε)||v||2

]
≤

(
1− ε

2(1+ ε)
+

3
8

ε2

(1+ ε)2

)k

exp
(

kε(1− ε)
2(1+ ε)

)
≤ exp

(
−k

2
(ε2/2− ε

3/3)
)

.

This proves the lower bound. For the upper bound we replicate parts of two proofs by Achlioptas [1], his
Lemma 5.1 and 5.2. We start by showing that

E
[
exp
{

d ·λ (ṽ · r1)
2
}]
≤E

[
∞

∑
i=0

diλ i (ṽ · r1)
2i

i!

]

=
∞

∑
i=0

λ idi

i!
E
[
(ṽ · r1)

2i
]

≤
∞

∑
i=0

λ idi

i!
E
[
T 2i
]

= E
[
exp
(

d ·λT 2
)]

=
1√

1−2λ
, λ < 1/2.
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Where E
[
exp
{

d ·λT 2
}]

= 1√
1−2λ

is a standard and easily proven result. This implies that

Pr
[
|| f (v)||2 > (1− ε)||v||2

]
≤E

[
exp
(

λd (ṽ · r1)
2
)]k

e−λk(1+ε), λ > 0

≤
(

1√
1−2λ

)k

e−λk(1+ε), λ < 1/2

≤((1+ ε)exp(−ε))k/2

≤exp

(
−k

2

(
ε2

2
− ε3

3

))
, (A.4)

where line A.4 is found to hold for 0 < ε < 1/2 by comparison of power series.
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