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Abstract. We describe algorithms for finding the regression of t, a se-
quence of values, to the closest sequence s by mean squared error, so that
s is always increasing (isotonicity) and so the values of two consecutive
points do not increase by too much (Lipschitz). The isotonicity constraint
can be replaced with a unimodular constraint, for exactly one local max-
imum in s. These algorithm are generalized from sequences of values to
trees of values. For each we describe near-linear time algorithms.

1 Introduction

Let M be a triangulation of a polygonal region P ⊆ R2 in which each vertex is as-
sociated with a real valued height (or elevation)1. Linear interpolation of vertex
heights in the interior of each triangle of M defines a piecewise-linear function
t : P → R, called a height function. A height function (or its graph) is widely
used to model a two-dimensional surface in numerous applications (e.g. modeling
the terrain of a geographical area). With recent advances in sensing and mapping
technologies, such models are being generated at an unprecedentedly large scale.
These models are then used to analyze the surface and to compute various geo-
metric and topological properties of the surface. For example, researchers in GIS
are interested in extracting river networks or computing visibility or shortest-
path maps on terrains modeled as height functions. These structures depend
heavily on the topology of the level sets of the surface and in particular on the
topological relationship between its critical points (maxima, minima, and saddle
points). Because of various factors such as measurement or sampling errors or
the nature of the sampled surface, there is often plenty of noise in these surface
models which introduces spurious critical points. This in turn leads to mislead-
ing or undesirable artifacts in the computed structures, e.g., artificial breaks in
river networks. These difficulties have motivated extensive work on topological
simplification and noise removal through modification of the height function t
into another one s : M → R that has the desired set of critical points and that
is as close to t as possible [8, 20, 23]. A popular approach is to decompose the
surface into pieces and modify each piece so that it has a unique minimum or
maximum [23]. In some applications, it is also desirable to impose the additional
constraint that the function s is Lipschitz; see below for further discussion.
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Problem statement. Let M = (V,A) be a planar graph with vertex set V and
arc (edge) set A ⊆ V × V . We may treat M as undirected in which case we
take the pairs (u, v) and (v, u) as both representing the same undirected edge
connecting u and v. Let γ ≥ 0 be a real parameter. A function s : V → R is
called

(L) γ-Lipschitz if (u, v) ∈ A implies s(v)− s(u) ≤ γ.

Note that if M is undirected, then Lipschitz constraint on an edge (u, v) ∈ A
implies |s(u)−s(v)| ≤ γ. For an undirected planar graph M = (V,A), a function
s : V → R is called

(U) unimodal if s has a unique local maximum, i.e. only one vertex v ∈ V such
that s(v) > s(u) for all (u, v) ∈ A.

For a directed planar graph M = (V,A), a function s : V → R is called

(I) isotonic if (u, v) ∈ A implies s(u) ≤ s(v).2

For an arbitrary function t : V → R and a parameter γ, the γ-Lipschitz unimodal
regression (γ-LUR) of t is a function s : V → R that is γ-Lipschitz and unimodal
on M and minimizes ‖s− t‖2 =

∑
v∈V (s(v)− t(v))2. Similarly, if M is a directed

planar graph, then s is the γ-Lipschitz isotonic regression (γ-LIR) of t if s
satisfies (L) and (I) and minimizes ‖s−t‖2. The more commonly studied isotonic
regression (IR) and unimodal regression [3, 5, 7, 22] are the special cases of LIR
and LUR, respectively, in which γ =∞, and therefore only the condition (I) or
(U) is enforced.

Given a planar graph M, a parameter γ, and t : V → R, the LIR (resp. LUR)
problem is to compute the γ-LIR (resp. γ-LUR) of t. In this paper we propose
near-linear-time algorithms for the LIR and LUR problems for two special cases:
when M is a path or a tree. We study the special case where M is a path prior to
the more general case where it is tree because of the difference in running time
and because doing so simplifies the exposition to the more general case.

Related work. As mentioned above, there is extensive work on simplifying the
topology of a height function while preserving the geometry as much as possi-
ble. Two widely used approaches in GIS are the so-called flooding and carving
techniques [1, 11, 23]. The former technique raises the height of the vertices in
“shallow pits” to simulate the effect of flooding, while the latter lowers the value
of the height function along a path connecting two pits so that the values along
the path vary monotonically. As a result, one pit drains to the other and thus one
of the minima ceases to exist. Various methods based on Laplacian smoothing
have been proposed in the geometric modeling community to remove unnecessary
critical points; see [6, 17, 20] and references therein.

2 A function s satisfying the isotonicity constraint (I) must assign the same value to all
the vertices of a directed cycle of M (and indeed to all vertices in the same strongly
connected component). Therefore, without loss of generality, we assume M to be a
directed acyclic graph (DAG).



A prominent line of research on topological simplification was initiated by
Edelsbrunner et. al. [13] who introduced the notion of persistence; see also [12,
28]. Roughly speaking, each homology class of the contours in sublevel sets of a
height function is characterized by two critical points at one of whom the class
is born and at the other it is destroyed. The persistence of this class is then the
height difference between these two critical points. Efficient algorithms [13, 14, 4]
simplify topology based on persistence, optimally eliminating all critical points
of persistence below a threshold measured as ‖s − t‖∞ = maxv∈V |s(v) − t(v)|.
No efficient algorithm is known to minimize ‖s− t‖2.

The isotonic-regression (IR) problem has been studied in statistics [5, 7, 22]
since the 1950s. It has many applications ranging from statistics [25] to bioin-
formatics [7], and from operations research [19] to differential optimization [16].
The pool adjacent violator algorithm (PAVA) [5] solves the IR problem on paths
in O(n) time, by merging consecutive level sets of vertex values that are out of
order. Brunk [10] and Thompson [27] initiated the study of the IR problem on
general DAGs and trees, respectively. Jewel [18] introduced the problem of Lips-
chitz isotonic regression on DAGs and showed connections between this problem
and network flow with quadratic cost functions. Stout [26] solves the UR prob-
lem on paths in O(n) time. Pardalos and Xue [21] give an O(n log n) algorithm
for the IR problem on trees. For the special case when the tree is a star they
give an O(n) algorithm. Spouge et. al.[24] give an O(n4) time algorithm for
the IR problem on DAGs. The problems can be solved under the L1 and L∞
norms on paths [26] and DAGs [3] as well, with an additional log n factor for
L1. To our knowledge there is no prior work on efficient algorithms for Lipschitz
isotonic/unimodal regressions in the literature.

Our results. We present efficient exact algorithms for LIR and LUR problems
on two special cases of planar graphs: paths and trees. In particular, we present
an O(n log n) algorithm for computing the LIR on a path of length n (Section 4),
and an O(n log n) algorithm on a tree with n nodes (Section 6). We present an
O(n log2 n) algorithm for computing the LUR problem on a path of length n
(Section 5). Our algorithm can be extended to solve the LUR problem on an
unrooted tree in O(n log3 n) time (Section 7). The LUR algorithm for a tree is
particularly interesting because of its application in the aforementioned carving
technique [11, 23]. The carving technique modifies the height function along a
number of trees embedded on the terrain where the heights of the vertices of each
tree are to be changed to vary monotonically towards a chosen “root” for that
tree. In other words, to perform the carving, we need to solve the IR problem on
each tree. The downside of doing so is that the optimal IR solution happens to
be a step function along each path toward the root of the tree with potentially
large jumps. Enforcing the Lipschitz condition prevents sharp jumps in function
value and thus provides a more natural solution to the problem.

Section 3 presents a data structure, called affine composition tree (ACT), for
maintaining a xy-monotone polygonal chain, which can be regarded as the graph
of a monotone piecewise-linear function F : R→ R. Besides being crucial for our
algorithms, ACT is interesting in its own right. A special kind of binary search



tree, an ACT supports a number of operations to query and update the chain,
each taking O(log n) time. Besides the classical insertion, deletion, and query
(computing F (x) or F−1(x) for a given x ∈ R), one can apply an Interval
operation that modifies a contiguous subchain provided that the chain remains
x-monotone after the transformation, i.e., it remains the graph of a monotone
function. For space, several proofs are missing; see the full version [2].

2 Energy Functions

On a discrete set U , a real valued function s : U → R can be viewed as a point
in the |U |-dimensional Euclidean space in which coordinates are indexed by the
elements of U and the component su of s associated to an element u ∈ U is s(u).
We use the notation RU to represent the set of all real-valued functions defined
on U .

Let M = (V,A) be a directed acyclic graph on which we wish to compute
γ-Lipschitz isotonic regression of an input function t ∈ RV . For any set of ver-
tices U ⊆ V , let M[U ] denote the subgraph of M induced by U , i.e. the graph
(U,A[U ]), where A[U ] = {(u, v) ∈ A : u, v ∈ U}. The set of γ-Lipschitz isotonic
functions on the subgraph M[U ] of M constitutes a convex subset of RU , de-
noted by Γ (M, U). It is the common intersection of all half-spaces determined
by the isotonicity and Lipschitz constraints associated with the edges in A[U ],
i.e., su ≤ sv and sv ≤ su + γ for all (u, v) ∈ A[U ].

For U ⊆ V we define EU : RV → R as EU (s) =
∑
v∈U (s(v)− t(v))2. The γ-

Lipschitz isotonic regression of the input function t is σ = arg mins∈Γ (M,V )EV (s).
For a subset U ⊆ V and v ∈ U define the function EvM[U ] : R→ R as

EvM[U ](x) = min
s∈Γ (M,U);s(v)=x

EU (s).

Lemma 1. For any U ⊆ V and v ∈ U , the function EvM[U ] is continuous and
strictly convex.

3 Affine Composition Tree

In this section we introduce a data structure, called affine composition tree
(ACT), for representing an xy-monotone polygonal chain in R2, which is being
deformed dynamically. Such a chain can be regarded as the graph of a piecewise-
linear monotone function F : R → R, and thus is bijective. A breakpoint of F
is the x-coordinate of a vertex of the graph of F (a vertex of F for short),
i.e., a b ∈ R at which the left and right derivatives of F disagree. The num-
ber of breakpoints of F will be denoted by |F |. A continuous piecewise-linear
function F with breakpoints b1 < · · · < bn can be characterized by its vertices
qi = (bi, F (bi)), i = 1, . . . , n together with the slopes µ− and µ+ of its left and
right unbounded pieces, respectively, extending to −∞ and +∞. An affine trans-
formation of R2 is a map φ : R2 → R2, q 7→M · q + c where M is a nonsingular



2× 2 matrix, (a linear transformation) and c ∈ R2 is a translation vector — in
our notation we treat q ∈ R2 as a column vector.

An ACT supports the following operations on a monotone piecewise-linear
function F with vertices qi = (bi, F (bi)), i = 1, . . . , n:

1. Evaluate(a) and Evaluate−1(a): Given any a ∈ R, return F (a) or F−1(a).
2. Insert(q): Given a point q = (x, y) ∈ R2 insert q as a new vertex of F . If
x ∈ (bi, bi+1), this operation removes the segment qiqi+1 from the graph of
F and replaces it with two segments qiq and qqi+1, thus making x a new
breakpoint of F with F (x) = y. If x < b1 or x > bk, then the affected
unbounded piece of F is replaced with one parallel to it but ending at q and
a segment connecting q and the appropriate vertex of F (µ+ and µ− remain
intact). We assume that F (bi) ≤ y ≤ F (bi+1).

3. Delete(b): Given a breakpoint b of F , removes the vertex (b, F (b)) from F ;
a delete operation modifies F in a manner similar to insert.

4. Affine(ψ): Given an affine transformation ψ : R2 → R2, modify the function
F to one whose graph is the result of application of ψ to the graph of F . See
Figure 1(Left).

5. Intervalp(ψ, τ−, τ+): Given an affine transformation ψ : R2 → R2 and
τ−, τ+ ∈ R and p ∈ {x, y}, this operation applies ψ to all vertices v of F
whose p-coordinate is in the range [τ−, τ+]. Note that Affine(ψ) is equiv-
alent to Intervalp(ψ,−∞,+∞) for p = {x, y}. See Figure 1(Right).

Affine and Interval are applied with appropriate choice of transformation
parameters so that the resulting chain remains xy-monotone.

An ACT T = T(F ) is a red-black tree that stores the vertices of F in the
sorted order, i.e., the ith node of T is associated with the ith vertex of F .
However, instead of storing the actual coordinates of a vertex, each node z of
T stores an affine transformation φz : q 7→ Mz · q + cz. If z0, . . . , zk = z is the
path in T from the root z0 to z, then let Φz(q) = φz0(φz1(. . . φzk

(q) . . . )). Notice
that Φz is also an affine transformation. The actual coordinates of the vertex
associated with z are (qx, qy) = Φz(0) where 0 = (0, 0).

Fig. 1: Left: the graph of a monotone piecewise linear function F (in solid black).
The dashed curve is the result of applying the linear transform ψ0(q) = Mq where

M =
` 1 1/3

1/3 2/3

´
. The gray curve, a translation of the dashed curve under vector

c =
`−1
−2

´
, is the result of applying Affine(ψ) to F where ψ(q) = Mq + c. Right:

Interval(ψ, τ−, τ+), only the vertices of curve F whose x-coordinates are in the
marked interval [τ−, τ+] are transformed. The resulting curve is the thick gray curve.



Given a value b ∈ R and p ∈ {x, y}, let Predp(b) (resp. Succp(b)) denote
the rightmost (resp. leftmost) vertex q of F such that the p-coordinate of q is
at most (resp. least) b. Using ACT T, Predp(b) and Succp(b) can be computed
in O(log n) time by following a path in T, composing the affine transformations
along the path, evaluating the result at 0, and comparing its p-coordinate with
b. Evaluate(a) determines the vertices q− = Predx(a) and q+ = Succx(a) of
F immediately preceding and succeeding a and interpolates F linearly between
q− and q+; if a < b1 (resp. a > bk), then F (a) is calculated using F (b1) and µ−
(resp. F (bk) and µ+). Since b− and b+ can be computed in O(log n) time and the
interpolation takes constant time, Evaluate(a) is answered in time O(log n).
Similarly, Evaluate−1(a) is answered using Predy(a) and Succy(a).

A key observation of ACT is that a standard rotation on any edge of T

can be performed in O(1) time by modifying the stored affine transformations
in a constant number of nodes (see Figure 2(left)) based on the fact that an
affine transformation φ : q 7→ M · q + c has an inverse affine transformation
φ−1 : q 7→ M−1 · (q − c); provided that the matrix M is invertible. A point
q ∈ R2 is inserted into T by first computing the affine transformation Φu for the
node u that will be the parent of the leaf z storing q. To determine φz we solve,
in constant time, the system of (two) linear equations Φu(φz(0)) = q. The result
is the translation vector cz. The linear transformation Mz can be chosen to be
an arbitrary invertible linear transformation, but for simplicity, we set Mz to
the identity matrix. Deletion of a node is handled similarly.

To perform an Intervalp(ψ, τ−, τ+) query, we first find the nodes z− and
z+ storing the vertices Predp(τ−) and Succp(τ+), respectively. We then suc-
cessively rotate z− with its parent until it becomes the root of the tree. Next,
we do the same with z+ but stop when it becomes the right child of z−. At this
stage, the subtree rooted at the left child of z+ contains exactly all the vertices
q for which qp ∈ [τ−, τ+]. Thus we compose ψ with the affine transformation
at that node and issue the performed rotations in the reverse order to put the
tree back in its original (balanced) position. Since z− and z+ were both within
O(log n) steps from the root of the tree, and since performing each rotation on
the tree can only increase the depth of a node by one, z− is taken to the root in
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Fig. 2: Left: Rotation in affine composition trees, with each node’s affine function
in greek. When rotating (z1, z2), changing the functions as shown the leaves remain
unchanged. Right: The breakpoints of the function Fi = dẼi/dx. For each i, s∗i−1 and
s∗i−1 + γ are the “new” breakpoints of Fi. All other breakpoints of Fi come from Fi−1

where those smaller than s∗i remain unchanged and those larger are increased by γ.



O(log n) steps and this increases the depth of z+ by at most O(log n). Thus the
whole operation takes O(log n) time.

We can augment T(F ) with additional information so that for any a ∈ R the
function E(a) = E(b1) +

∫ a
b1
F (x) dx, where b1 is the leftmost breakpoint and

E(b1) is value associated with b1, can be computed in O(log n) time; we refer to
this operation as Integrate(a). We provide the details in the full version [2].

Theorem 1. A continuous piecewise-linear monotonically increasing function
F with n breakpoints can be maintained using a data structure T(F ) such that

1. Evaluate and Evaluate−1 queries can be answered in O(log n) time,
2. an Insert or a Delete operation can be performed in O(log n) time,
3. Affine and Interval operations can be performed in O(1) and O(log n)

time, respectively.
4. Integrate operation can be performed in O(log n) time.

One can use the above operations to compute the sum of two increasing
continuous piecewise-linear functions F and G as follows: we first compute F (bi)
for every breakpoint bi of G and insert the pair (bi, F (bi)) into T(F ). At this
point the tree still represents T(F ) but includes all the breakpoints of G as
degenerate breakpoints (at which the left and right derivates of F are the same).
Finally, for every consecutive pair of breakpoints bi and bi+1 of G we apply an
Intervalx(ψi, bi, bi+1) operation on T(F ) where ψi is the affine transformation
q 7→ Mq + c where M =

(
1 0
α 1

)
and c =

(
0
β

)
, in which Gi(x) = αx + β is

the linear function that interpolates between G(bi) at bi and G(bi+1) at bi+1

(similar operation using µ− and µ+ of G for the unbounded pieces of G must
can be applied in constant time). It is easy to verify that after performing this
series of Interval’s, T(F ) turns into T(F +G). The total running time of this
operation is O(|G| log |F |). Note that this runtime can be reduced to O(|G|(1 +
log |F |/ log |G|)), for |G| < |F |, by using an algorithm of Brown and Tarjan [9]
to insert all breakpoints and then applying all Interval operations in a bottom
up manner. Furthermore, this process can be reversed (i.e. creating T(F − G)
without the breakpoints of G, given T(F ) and T(G)) in the same runtime. We
therefore have shown:

Lemma 2. Given T(F ) and T(G) for a piecewise-linear isotonic functions F
and G where |G| < |F |, T(F + G) or T(F − G) can computed in O(|G|(1 +
log |F |/ log |G|)) time.

Tree sets. We will be repeatedly computing the sum of two functions F and
G. It will be too expensive to compute T(F + G) explicitly using Lemma 2,
therefore we represent it implicitly. More precisely, we use a tree set S(F ) =
{T(F1), . . . ,T(Fk)} consisting of affine composition trees of monotone piecewise-
linear functions F1, . . . , Fk to represent the function F =

∑k
j=1 Fj . We perform

several operations on F or S similar to those of a single affine composition tree.
Evaluate(x) on F takes O(k log n) time, by evaluating

∑k
j=1 Fj(x). And

Evaluate−1(y) on F takesO(k log2 n) time using Frederickson and Johnson [15].



Given the ACT T(F0), we can convert S(F ) to S(F + F0) in two ways:
an Include(S, F0) operation sets S = {T(F1), . . . ,T(Fk),T(F0)} in O(1) time.
A Merge(S, F0) operations sets S = {T(F1 + F0),T(F2), . . . ,T(Fk)} in time
O(|F0| log |F1|). We can also perform unInclude(S, F0) and unMerge(S, F0),
operations that reverse the respective above operations in the same runtimes.

We can perform an Affine(S, ψ) where ψ describes a linear transform M and
a translation vector c. To update F by ψ we update F1 by ψ and for j ∈ [2, k]
update Fj by just M . This takes O(k) time. It follows that we can perform
Interval(S, ψ, τ−, τ+) in O(k log n) time, where n = |F1|+ . . .+ |Fk|. Here we
assume that the transformation ψ is such that each Fi remains monotone after
the transformation.

4 LIR on Paths

In this section we describe an algorithm for solving the LIR problem on a path,
represented as a directed graph P = (V,A) where V = {v1, . . . , vn} and A =
{(vi, vi+1) : 1 ≤ i < n}. A function s : V → R is isotonic (on P ) if s(vi) ≤
s(vi+1), and γ-Lipschitz for some real constant γ if s(vi+1) ≤ s(vi) + γ for each
i = 1, . . . , n−1. For the rest of this section let t : V → R be an input function on
V . For each i = 1, . . . , n, let Vi = {v1, . . . , vi}, let Pi be the subpath v1, . . . , vi,
and let Ei and Ẽi, respectively, be shorthands for EVi

and Evi

Pi
. By definition, if

we let Ẽ0 = 0, then for each i ≥ 1:

Ẽi(x) = (x− t(vi))2 + min
x−γ≤y≤x

Ẽi−1(y). (1)

By Lemma 1, Ẽi is convex and continuous and thus has a unique minimizer s∗i .

Lemma 3. For i ≥ 1, the function Ẽi is given by the recurrence relation:

Ẽi(x) = (x− t(vi))2 +


Ẽi−1(x− γ) x > s∗i−1 + γ

Ẽi−1(s∗i−1) x ∈ [s∗i−1, s
∗
i−1 + γ]

Ẽi−1(x) x < s∗i−1.

(2)

Thus by Lemmas 1 and 3, Ẽi is strictly convex and piecewise quadratic. We
call a value x that determines the boundary of two neighboring quadratic pieces
of Ẽi a breakpoint of Ẽi. Since Ẽ1 is a simple (one-piece) quadratic function, it
has no breakpoints. For i > 1, the breakpoints of the function Ẽi consist of s∗i−1

and s∗i−1 + γ, as determined by recurrence (2), together with breakpoints that
arise from recursive applications of Ẽi−1. Examining equation (2) reveals that all
breakpoints of Ẽi−1 that are smaller than s∗i−1 remain breakpoints in Ẽi and all
those larger than s∗i−1 are increased by γ and these form all of the breakpoints of
Ẽi (see Figure 2(right)). Thus Ẽi has precisely 2i− 2 breakpoints. To compute
the point s∗i at which Ẽi(x) is minimized, it is enough to scan over these O(i)
quadratic pieces and find the unique piece whose minimum lies between its two
ending breakpoints.



Lemma 4. Given the sequence s∗1, . . . , s
∗
n, one can compute the γ-LIR s of input

function t in O(n) time.

One can compute the values of s∗1, . . . , s
∗
n in n iterations. The ith iteration

computes the value s∗i at which Ẽi is minimized and then uses it to compute
Ẽi+1 via (2) in O(i) time. Hence, the γ-LIR of t ∈ RV can be computed in linear
time. However, this gives an O(n2) algorithm for computing the γ-LIR of t. We
now show how this running time can be reduced to O(n log n).

For simplicity we assume each s∗i is none of the breakpoints of Ẽi. Hence
s∗i belongs to the interior of some interval on which Ẽi is quadratic, and its
derivative is zero at s∗i . If we know to which quadratic piece of Ẽi the point s∗i
belongs, we can determine s∗i by setting the derivative of that piece to zero.

Lemma 5. The derivative of Ẽi is continuous isotonic and piecewise-linear.

Let Fi denote the derivative of Ẽi with the recurrence (via (2)):

Fi+1 = 2(x− t(vi+1)) + F̂i(x); (3)

F̂i(x) =

Fi(x− γ) x > s∗i + γ,
0 x ∈ [s∗i , s

∗
i + γ],

Fi(x) x < s∗i .
(4)

if we set F0 = 0. As mentioned above, s∗i is simply the solution of Fi(x) = 0,
which, by Lemma 5 always exists and is unique. Intuitively, F̂i is obtained from
Fi by splitting it at s∗i , shifting the right part by γ, and connecting the two
pieces by a horizontal edge from s∗i to s∗i + γ (lying on the x-axis).

In order to find s∗i efficiently, we use an ACT T(Fi) to represent Fi. It
takes O(log |Fi|) = O(log i) time to compute s∗i = Evaluate−1(0) on T(Fi).
Once s∗i is computed, we store it in a separate array for back-solving through
Lemma 4. We turn T(Fi) into T(F̂i) by performing a sequence of Insert((s∗i , 0)),
Intervalx(ψ, s∗i ,∞), and Insert((s∗i , 0)) operations on T(Fi) where ψ(q) =
q +

( γ
0

)
; the two insert operations add the breakpoints at s∗i and s∗i + γ and

the interval operation shifts the portion of Fi to the right of s∗i by γ. We then
turn T(F̂i) into T(Fi+1) by performing Affine(φi+1) operation on T(F̂i) where
φi+1(q) = Mq + c where M =

(
1 0
2 1

)
and c =

(
0

−2t(vi+1)

)
.

Given ACT T(Fi), s∗i and T(Fi+1) can be computed in O(log i) time. Hence,
we can compute s∗1, . . . , s

∗
n in O(n log n) time. By Lemma 4, we can conclude:

Theorem 2. Given a path P = (V,A), a function t ∈ RV , and a constant γ,
the γ-Lipschitz isotonic regression of t on P can be found in O(n log n) time.

Update operation. We define a procedure Update(T(F̂i), t(vi+1), γ) that en-
capsulates the process of turning T(F̂i) into T(F̂i+1) and returning s∗i+1. Specif-
ically, it performs Affine(φi+1) of T(F̂i) to produce T(Fi+1), then it outputs
s∗i+1 = Evaluate−1(0) on T(Fi+1), and finally a sequence of Insert((s∗i+1, 0)),
Interval(ψ, s∗i+1,∞), and Insert((s∗i+1, 0)) operations on T(Fi+1) for T(F̂i+1).



Performed on T(F ) where F has n breakpoints, an Update takes O(log n) time.
An unUpdate(T(F̂i+1), t(vi+1), γ) reverts affects of Update(T(F̂i), t(vi+1), γ).
This requires that s∗i+1 is stored for the reverted version. Similarly, we can per-
form Update(S, t(vi), γ) and unUpdate(S, t(vi), γ) on a tree set S, inO(k log2 n)
time, the bottleneck coming from Evaluate−1(0).

Lemma 6. For T(F̂i), Update(T(F̂i), t(vi), γ) and unUpdate(T(F̂i), t(vi), γ)
take O(log n) time.

5 LUR on Paths

Let P = (V,A) be an undirected path, V = {v1, . . . , vn}, A = {{vi, vi+1}, 1 ≤
i < n}, and t ∈ RV . For vi ∈ V let Pi = (V,Ai) be a directed graph in which
all edges are directed towards vi; that is, for j < i, (vj , vj+1) ∈ Ai and for
j > i (vj , vj−1) ∈ Ai. For each i = 1, . . . , n, let Γi = Γ (Pi, V ) ⊆ RV and let
σi = arg mins∈Γi EV (s). If κ = arg miniEV (σi), then σκ is the γ-LUR of t on P .

We find σκ in O(n log2 n) time by solving the LIR problem, then traversing
the path while maintaining the optimal solution using Update and unUpdate.
Specifically, for i = 1, . . . , n, let V −i = {v1, . . . , vi−1} and V +

i = {vi+1, . . . , vn}.
For Pi, let F̂−i−1, F̂+

i+1 be the functions on directed paths P [V −i ] and P [V +
i ], re-

spectively, as defined in (3). Set F̄i(x) = 2(x− t(vi)). Then the function Fi(x) =
dEvi

(x)/dx can be written as Fi(x) = F̂−i−1(x) + F̂+
i+1(x) + F̄i(x). We store Fi

as the tree set Si = {T(F̂−i−1),T(F̂+
i+1),T(F̄i)}. By performing Evaluate−1(0)

we can compute s∗i in O(log2 n) time (the rate limiting step), and then we
can compute EV (s∗i ) in O(log n) time using Integrate(s∗i ). Assuming we have
T(F̂−i−1) and T(F̂+

i+1), we can construct T(F̂−i ) and T(F̂+
i+2) in O(log n) time be

performing Update(T(F−i−1), t(vi), γ) and unUpdate(T(F+
i+1), t(vi+1), γ). Since

S1 = {T(F−0 ),T(F+
2 ),T(F̄1)} is constructed in O(n log n) time, finding κ by

searching all n tree sets takes O(n log2 n) time.

Theorem 3. Given an undirected path P = (V,A) and a t ∈ RV together with
a real γ ≥ 0, the γ-LUR of t on P can be found in O(n log2 n) time.

6 LIR on Rooted Trees

Let T = (V,A) be a rooted tree with root r and let for each vertex v, Tv =
(Vv, Av) denote the subtree of T rooted at v. Similar to the case of path LIR,
for each vertex v ∈ V we use the shorthands Ev = EVv

and Ẽv = EvTv
. Since

the subtrees rooted at distinct children of a node v are disjoint, one can write
an equation corresponding to (1) in the case of paths, for any vertex v of T :

Ẽv(x) = (x− t(v))2 +
∑

u∈δ−(v)

min
x−γ≤y≤x

Ẽu(y), (5)



where δ−(v) = {u ∈ V | (u, v) ∈ A}. An argument similar to that of Lemma
5 together with Lemma 1 implies that for every v ∈ V , the function Ẽv is con-
vex and piecewise quadratic, and its derivative Fv is continuous, monotonically
increasing, and piecewise linear. We can prove that Fv satisfies the following
recurrence where F̂u is defined analogously to F̂i in (4):

Fv(x) = 2(x− t(v)) +
∑

u∈δ−(v)

F̂u(x). (6)

Thus to solve the LIR problem on a tree, we post-order traverse the tree (from
the leaves toward the root) and when processing a node v, we compute and sum
the linear functions F̂u for all children u of v and use (6) to compute the function
Fv. We then solve Fv(x) = 0 to find s∗v. As in the case of path LIR, F̂v can be
represented by an ACT T(F̂v). For simplicity, we assume each non-leaf vertex
v has two children h(v) and l(v), where |F̂h(v)| ≥ |F̂l(v)|. Given T(F̂h(v)) and
T(F̂l(v)), we can compute T(F̂v) and s∗v with the operation Update(T(F̂h(v) +
F̂l(v)), t(v), γ) in O(|F̂l(v)|(1 + log |F̂h(v)|/ log |F̂l(v)|)) time. The merging of two
functions dominates the time for the update. By careful, global analysis of all
merge costs we can achieve the following result:

Theorem 4. Given rooted tree T = (V,A), function t ∈ RV , and Lipschitz
constant γ, we can find in O(n log n) time, the γ-LIR of t on T .

7 LUR on Trees

We extend this framework to solve the LUR on trees problem. Given an undi-
rected input tree, we direct the tree towards an arbitrary vertex chosen as the
root and invoke Theorem 4. Similar to LUR on paths, we traverse the tree, let-
ting each vertex be the root, and maintaining enough information to recompute
the LIR solution for the new root in O(log3 n) time. We return the solution for
the root which minimizes the error. The details are left for the full version [2].

Theorem 5. Given unrooted tree T = (V,A), function t ∈ RV , and Lipschitz
constraint γ, we can find in O(n log3 n) time the γ-LUR of t on T .
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