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Abstract

In this paper we prove lower bounds on randomized mul-
tiparty communication complexity, both in the blackboard
model (where each message is written on a blackboard for all
players to see) and (mainly) in the message-passing model,
where messages are sent player-to-player. We introduce a
new technique for proving such bounds, called symmetriza-
tion, which is natural, intuitive, and often easy to use.

For example, for the problem where each of k players
gets a bit-vector of length n, and the goal is to compute the
coordinate-wise XOR of these vectors, we prove a tight lower
bounds of Q(nk) in the blackboard model. For the same
problem with AND instead of XOR, we prove a lower bounds
of roughly Q(nk) in the message-passing model (assuming
k < n/3200) and Q(nlogk) in the blackboard model. We
also prove lower bounds for bit-wise majority, for a graph-
connectivity problem, and for other problems; the technique
seems applicable to a wide range of other problems as well.
The obtained communication lower bounds imply new lower
bounds in the functional monitoring model [11] (also called
the distributed streaming model). All of our lower bounds
allow randomized communication protocols with two-sided
error.

We also use the symmetrization technique to prove sev-
eral direct-sum-like results for multiparty communication.

1 Introduction

In this work we consider multiparty communication
complexity in the number-in-hand model. In this
model, there are k players {p1,...,pr}, each with his
own n-bit input x; € {0,1}". The players wish to
collaborate in order to compute a joint function of their
inputs, f(x1,...,2). To do so, they are allowed to
communicate, until one of them figures out the value of
f(z1,...,2) and returns it. All players are assumed
to have unlimited computational power, so all we care
about is the amount of communication used. There are
three variants to this model, according to the mode of
communication:
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1. the blackboard model, where any message sent by
a player is written on a blackboard visible to all
players;

2. the message-passing model, where a player p; send-
ing a message specifies another player p; that will
receive this message;

3. the coordinator model, where there is an additional
(k+1)-th player called the coordinator, who receives
no input. Players can only communicate with the
coordinator, and not with each other directly.

We will work in all of these, but will mostly concentrate
on the message-passing model and the coordinator
model. Note that the coordinator model is almost
equivalent to the message-passing model, up to a logk
multiplicative factor, since instead of player ¢ sending
message x to player j, player ¢ can transmit message
(j, x) to the coordinator, and the coordinator forwards
it to player j.

Lower bounds in the three models above are useful
for proving lower bounds on the space usage of stream-
ing algorithms, and for other models as well, as we
explain in Section 1.2. Most previous lower bounds
have been proved in the blackboard model, but lower
bounds in the message-passing model and the coordina-
tor model suffice for all the applications we have checked
(again, see more in Section 1.2).

Note that another, entirely different, model for
multiparty communication is the number-on-forehead
model, where each player can see the inputs of all
other players but mot his own input. This model
has important applications for circuit complexity (see
e.g. [23]). We do not discuss this model at all in this
paper.

We allow all protocols to be randomized, with
public coins, i.e. all players have unlimited access to
a common infinite string of independent random bits.
We allow the protocol to return the wrong answer with



probability e (which should usually be thought of as
a small constant); here, the probability is taken over
the sample space of public randomness. Note that the
public coin model might seem overly powerful, but in
this paper we are mainly interested in proving lower
bounds rather than upper bounds, so giving the model
such strength only makes our results stronger.

For more on communication complexity, see the
book of Kushilevitz and Nisan [23], and the references
therein. We give some more definitions in the prelimi-
naries, in Section 2.

1.1 Warm-Up We begin by sketching two lower
bounds obtained using our technique, both of them
for the coordinate-wise k-XOR problem. These lower
bounds can be proved without using symmetrization,
but their proofs that use symmetrization are particu-
larly appealing.

First consider the following problem: Each player
gets a bitvector x; € {0,1}"™ and the goal is to compute
the coordinate-wise XOR of these vectors. We operate
in the blackboard model, where messages are posted on
a blackboard for all to see.

THEOREM 1.1. The coordinate-wise k-XOR problem re-
quires communication Q2 (nk) in the blackboard model.

To see this, first let us specify the hard distribution:
we prove the lower bound when the input is drawn from
this distribution, and by the easy direction of Yao’s
Minimax Lemma (see e.g. [23]), it follows that this lower
bound applies for the problem as a whole. The hard
distribution we choose is just the distribution where
the inputs are independently drawn from the uniform
distribution.

To prove the lower bound, consider a protocol P for
this k-player problem, which works on this distribution,
communicates C(P) bits in expectation, and suppose
for now that it never makes any errors (it will be
easy to remove this assumption). We build from
P a new protocol P’ for a 2-player problem. In
the 2-player problem, suppose that Alice gets input
x and Bob gets input y, where x,y € {0,1}" are
independent random bitvectors. Then P’ works as
follows: Alice and Bob randomly choose two distinct
indices 4,7 € {1,...,k} using the public randomness,
and they simulate the protocol P, where Alice plays
player ¢ and lets x; = xz, Bob plays player 5 and lets
x; =y, and they both play all of the rest of the players;
the inputs of the rest of the players is chosen from
shared randomness. Alice and Bob begin simulating the
running of P. Every time player ¢ should speak, Alice
sends to Bob the message that player ¢ was supposed
to write on the board, and vice versa. When any

other player p, (r # i,j) should speak, both Alice and
Bob know his input so they know what he should be
writing on the board, thus no communication is actually
needed (this is the key point of the symmetrization
technique). A key observation is that the inputs
of the k players are uniform and independent and
thus entirely symmetrical,! and since the indices i
and j were chosen uniformly at random, then the
expected communication performed by the protocol P’
is E[C(P")] = 2C(P)/k. Furthermore, when the players
have finished simulating P’, Alice now knows the bit-
wise XOR of all the vectors x1,...,xk, from which she
can easily reconstruct the vector z; (since she already
knows all the other vectors z, for r # j). It follows
that using 2C(P)/k expected communication, Alice
has managed to reconstruct Bob’s entire input; from
an easy information-theoretic argument it follows that
2C(P)/k > n, so C(P) > Q(nk), proving the theorem.

Extending the above argument to cover the case
where the protocol P is allowed to return the wrong
answer with probability € is also easy, simply by showing
that if Alice managed to learn Bob’s entire bit-vector
with probability 1 — €, then (1 — €) - n bits must
have been communicated: this also follows easily from
information-theoretic arguments.

Note that crucial fact that the hard distribution
we chose is symmetric: if the distribution of the inputs
to the k players was not symmetric, then the protocol
P could try to deduce the indices ¢ and j from some
statistical properties of the observed inputs, and act
according to that. Then the best upper bound we could
get on the communication complexity of P’ would be
C(P’) < C(P), which is much too weak.

We have just described the version of the sym-
metrization method for the blackboard model. A sim-
ilar (slightly more complicated) line of thinking leads
to a lower bound of Q(nlogk) on the complexity of the
coordinate-wise AND problem in the blackboard model;
see Section 3.1.

Let us now sketch the symmetrization method as it
is used in the coordinator model, where players can only
send and receive messages to and from the coordinator.
We prove a lower bound on the same problem as above,
the coordinate-wise k-XOR problem.

THEOREM 1.2. The coordinate-wise k-XOR problem re-
quires communication Q2(nk) in the coordinator model.

THere and throughout the paper, symmetric means that the
inputs are drawn from a distribution where renaming the players
does not change the distribution. Namely, a distribution D over
X™ is called symmetric if exchanging any two coordinates in D

keeps the distribution the same.



Note that this theorem actually follows from Theo-
rem 1.1, since the blackboard model is stronger than the
coordinator model. However, the proof we sketch here
is useful as a warmup exercise, since it shows an easy
example of the symmetrization technique as applied to
the coordinator model. In the paper we prove multi-
ple lower bounds using this technique, most of which do
not follow from corresponding bounds in the blackboard
model.

To prove this theorem, we use the same hard dis-
tribution as above: all inputs are uniform and inde-
pendent. Let P be a protocol in the coordinator model,
which computes the coordinate-wise XOR, uses commu-
nication C(P) and for now assume that P never makes
any errors. As before, we build a new protocol P’ for
a 2-player problem. In the 2-player problem, suppose
that Alice gets input x and Bob gets input y, where
x,y € {0,1}" are independent random bitvectors. Then
P’ works as follows: Alice and Bob choose a single index
i € {1,...,k} from public randomness. Alice and Bob
simulate the protocol P, where Alice simulates player i
and lets z; = =, and Bob plays all the rest of the play-
ers, including the coordinator, and chooses their inputs
uniformly, conditioned on their XOR being equal to y.

To simulate the protocol P, whenever player ¢ needs
to send a message to the coordinator, then Alice sends
a message to Bob, and whenever the coordinator needs
to send a message to player i, Bob sends a message to
Alice. Whenever any player j # i needs to speak to the
coordinator, no communication is needed, since both
are played by Bob. Note again that the distribution
of the inputs of the k players is independent uniform
(for this it is crucial to remember that x and y were
uniform and independent in the first place). Once
again, from reasons of symmetry, since the index i was
chosen uniformly and the inputs are symmetric, the
expected communication performed by the protocol P’
is E[C(P’)] < 2C(P)/k. Furthermore, at the end of the
running of P’, Alice knows the value of x &y so she can
reconstruct the value of y. As before, this implies the
theorem. The assumption that we never make errors
can once again be easily removed.

1.1.1 Discussion We see that the crux of the sym-
metrization technique in the coordinator model is to
consider the k-player problem that we wish to lower-
bound, to find a symmetric distribution which seems
hard for it, to give Alice the input of one player (chosen
at random) and Bob the input of all other players, and
to prove a lower bounds for this two-player problem. If
the lower bound for the two player problem is L, the
lower bound for the k-player problem will be kL. For
the blackboard model, the proofs have the same outline,

except in the 2-player problem Alice gets the input of
one randomly chosen player, Bob gets the input of an-
other, and they both get the inputs of all the rest of the
players. There is one important thing to note here:

e This argument only works when the hard distribu-
tion is symmetric.

1.2 DMotivation, Previous Work and Related
Models Communication complexity is a widely stud-
ied topic. In multiplayer communication complexity, the
most studied mode of communication is the blackboard
model. The message-passing model was already consid-
ered in [15]. (This model can also be called the private-
message model, but note that this name was used in
[18, 16] for a different model.) The coordinator model
can be thought of as a server-site setting 2, where there
is one server and k sites. FEach site has gathered n bits of
information and the server wants to evaluate a function
on the collection of these k - n bits. Each site can only
communicate with the server, and a server can commu-
nicate with any site. This server-site model has been
widely studied in the databases and distributed com-
puting communities. Work includes computing top-k
[7, 26, 29] and heavy hitters [36, 19].

Another closely related model is the distributed
streaming model, in which we also have one server and k
sites. The only difference is that now the computation is
dynamic. That is, each site receives a stream of elements
over time and the server would like to maintain continu-
ously at all times some function f of all the elements in
the k sites. Thus the server-site model can be seen as a
one-shot version of the distributed streaming setting. It
follows that any communication complexity lower bound
in the message-passing model or the coordinator model
also hold in the distributed streaming model. A lot of
work on distributed streaming has been done recently
in the theory community and the database community,
including maintaining random samplings [12], frequency
moments [9, 11], heavy hitters [4, 22, 24, 34], quantiles
[10, 34], entropy [3], various sketches [13, 10] and some
non-linear functions [31, 32].

We will come back to the latter two models in
Section 6.

It is interesting to note that despite the large num-
ber of upper bounds (i.e. algorithms, communication
protocols) in the above models, very few lower bounds
have been proved in any of those models, likely because
there were few known techniques to prove such results.

A further application of the message-passing model
could be for Secure Multiparty Computation: in this

2This terminology is similar as the standard “client-server”,

and is used extensively in the literature.



model, there are several players who do not trust each
other, but want to compute a joint function of their
inputs, with each of them learning nothing about the
inputs of the others players except what can be learned
from the value of the joint function. Obviously, any
lower bound in the message passing model immediately
implies a lower bound on the amount of communication
required for Secure Multiparty Computation. For more
on this model, see e.g. [17].

One final application is for the streaming model. In
this model, there is a long stream of data that can only
be scanned from left to right. The goal is to compute
some function of the stream, and minimize the space
usage. It is easy to see that if we partition the stream
into k parts and give each part to a different player, then
a lower bound of L on the communication complexity
of the problem in the coordinator model implies a lower
bound of L/k on the space usage. When ¢ passes
over the model are allowed, a lower bound of L in the
coordinator model translates to a lower bound of L/tk
in the streaming model.

1.3 Our Results and Paper Outline Our main
technical result in this paper are lower bounds of
Q(nk) randomized communication for the bitwise k-
party AND, OR, and MAJ (majority) functions in
the coordinator model. These sidestep clever upper
bound techniques (e.g. Slepian-Wolf coding) and can
be found in Section 3. In the same section we prove
some lower bounds for AND and OR in the blackboard
model as well. Back to the coordinator model, we show
that the connectivity problem (given k players with
subgraphs on a common set of nodes, determine if it is
connected) requires Q(nk/log? k) communication. This
is in Section 4.

The coordinate-wise lower bounds imply lower
bounds for the well-studied problems of distinct ele-
ments, e-approximate heavy-hitters, and e-kernels in
the server-site model (or the other related models). We
show any randomized algorithm requires at least Q(nk),
Q(n/e) and Q(k/e(@=1/2) communication, respectively.
The latter is shown to be tight. This is in Section 6.

We give some direct-sum-like results in Section 5.

2 Preliminaries

In this section we review some basic concepts and
definitions.

We denote [n] = {1,...,n}. All logarithms are
base-2 unless noted otherwise.

Communication complexity. Consider two players
Alice and Bob, given bit vectors A and B, respectively.
Communication complexity (see for example the book

[23]) bounds the communication between Alice and Bob
that is needed to compute some function f(A, B). The
communication complexity of a particular protocol is
the maximal number of bits that it communicated,
taken in the worst case over all pairs of inputs. The
communication complexity of the problem f is the best
communication complexity of P, taken over all protocols
P that correctly compute f.

Certain functions (such as f = EQ which deter-
mines if A equals B) can be computed with less commu-
nication if randomness is permitted. Let R(f) denotes
the communication complexity when the protocol is al-
lowed to make a mistake with probability €. The error
is taken over the randomness used by the protocol.

Sometimes we are interested in the case where the
input of Alice and Bob is drawn from some distribution
w1 over pairs of inputs. We want to allow an error e,
this time taken over the choice of the input. The worst-
case communication complexity in this case is denoted
by Df,(f). Yao [33] showed that R(f) > max, Dj,(f),
thus in order to prove a lower bounds for randomized
protocols it suffices to find a hard distribution and prove
a distributional lower bound for it. This is called the
Yao Minimax Principle.

In this paper we use an uncommon notion of ex-
pected distributional communication complexity. In this
case we consider the distributional setting as in the last
paragraph, but this time consider the expected cost of
the protocol, rather than the worst-case cost; again, the
expectation is taken over the choice of input. In an
abuse of notation, we denote this E[D5,(f)].

2.1 Two-Party Lower Bounds We state a couple
of simple two-party lower bounds that will be useful in
our reductions.

2-BITS. Let (, be a distribution over bit-vectors of
length n, where each bit is 1 with probability p and
0 with probability 1 — p. In this problem Alice gets
a vector drawn from (,, Bob gets a subset S of [n] of
cardinality |S| = m, and Bob wishes to learn the bits of
Alice indexed by S.

The proof of the following lemma is in Appendix A.

LeMMa 2.1. E[D;/*(2-BITS)] = Q(nplog(1/p)).

2-DISJ. In this problem Alice and Bob each have an
n-bit vector. If we view vectors as sets, then each of
them has a subset of [n] corresponding to the 1 bits.
Let x be the set of Alice and y be the set of Bob. It is
promised that [z Ny| =1 or 0. The goal is to return 1
if Ny # 0, and 0 otherwise.

We define the input distribution u as follows. Let
I = (n+1)/4. With probability 1/¢, z and y are random



subsets of [n] such that |z| = |y| = and |[zNy| = 1.
And with probability 1 — 1/¢,  and y are random
subsets of [n] such that |z| = |y| =1 and z Ny = 0.
Razborov [30] (see also [20]) proved that for t = 4,
D,l/lom(Q—DISJ) = Q(n). In the following theorem we
extend this result to general ¢t and also to the expected
communication complexity. In Section 3.1 we only need
t =4, and in Section 4 we will need general ¢.

The proof for the following lemma is in Appendix
B.

LEMMA 2.2. When p has |z Ny| = 1 with probability
1/t then E | DY IOOt(Q-DISJ)} = Q(n).

3 Bit-wise Problems

3.1 Multiparty AND/OR We now consider mul-
tiparty AND/OR (below we use k-AND and k-OR for
short). In the k-AND problem, each player i (1 <1 < k)
has an n-bit vector I; and we want to establish the
bitwise AND of Il', that iS, fj(Ila-“aIk) = /\Z‘Ii,j
for j = {1,...,n}. k-OR is similarly defined with
OR. Observe that the two problems are isomorphic
by fi(Ii,...,Ix) = —gj(I1,...,Ix) for j = {1,...,n},
where I; is obtained by flipping all bits of I;. Therefore
we only need to consider one of them. Here we discuss
k-OR.

3.1.1 Idea for the k-OR Lower Bound in the Co-
ordinator Model We now discuss the hard distribu-
tion and sketch how to apply the symmetrization tech-
nique for the k-OR problem in the coordinator model.
The formal proof can be found in the next subsection.
We in fact start by describing two candidate hard
distributions that do not work. The reasons they do
not work are interesting in themselves. Throughout this
subsection, assume for simplicity that £ > 100log n.
The most natural candidate for a hard distribution
is to make each entry equal to 1 with probability 1/k.
This has the effect of having each bit in the output
vector be roughly balanced, which seems suitable for
being a hard case. This is indeed the hard distribution
for the blackboard model, but for the coordinator
model (or the message-passing model) it is an easy
distribution: Each player can send his entire input to
the coordinator, and the coordinator can figure out the
answer. The entropy of each player’s input is only
©((nlogk)/k), so the total communication would be
O(nlogk) in expectation using e.g. Shannon’s coding
theorem;? this is much smaller than the lower bound we

3To show the upper bounds in this subsection we use some

notions from information theory without giving complete back-
ground for them. The reader can refer to e.g. [14], or alterna-

wish to prove. Clearly, we must choose a distribution
where each player’s input has entropy (n). This is the
first indication that the k-player problem is significantly
different than the 2-player problem, where the above
distribution is indeed the hard distribution.

The next candidate hard distribution is to randomly
partition the n coordinates into two equal-sized sets:
The important set, where each entry is equal to 1
with probability 1/k, and the balancing set, where all
entries are equal to 1. Now the entropy of each player’s
input is ©(n), and the distribution seems like a good
candidate, but there is a surprising upper bound for
this distribution: the coordinator asks 100logn players
to send him their entire input, and from this can easily
figure out which coordinates are in the balancing set
and which are in the important set. Henceforth, the
coordinator knows this information, and only needs to
learn the players’ values in the important set, which
again have low entropy. We would want the players to
send these values, but the players themselves do not
know which coordinates are in the important set, and
the coordinator would need to send nk bits to tell all
of them this information. However, they do not need
to know this in order to get all the information across:
using a protocol known as Slepian- Wolf coding (see e.g.
[14]) the players can transmit to the coordinator all of
their values in the important coordinates, with only
nlogk total communication (and a small probability
of error). The idea is roughly as follows: each player
p; chooses 100nlogk/k sets S;; C [n] independently
and uniformly at random from public randomness. For
each j, the player XORs the bits of his input in the
coordinates of S;;, and sends the value of this XOR
to the coordinator. The coordinator already knows
the balancing set, so he only has ©(nlogk/k) bits of
uncertainty about player ¢’s input, meaning he can
reconstruct the player’s input with high probability (say
by exhaustive search). The upper bound follows.

To get an actual hard distribution, we fix the hard
distribution from the last paragraph. We randomly
partition the n coordinates into two equal-sized sets:
The important set, where each entry is equal to 1 with
probability 1/n, and the noise set, where each entry is
equal to 1 with probability 1/2.% Clearly, each player’s
input has entropy ©(n). Furthermore, the coordinator
can again cheaply figure out which coordinates are in

tively can skip them entirely, as they are inconsequential for the
remained of the paper and for understanding the symmetrization
technique.

4We could have chosen each entry in the important set to be
equal to 1 with probability 1/k as well, but choosing a value of
1/n makes the proofs easier. The important thing is to choose
each of the noise bits to be equal to 1 with probability 1/2.



the important set and which are in the noise set, but
the players do not know this information, and nothing
like Slepian-Wolf coding exists to help them transmit
the information to the coordinator. The distribution
that we use in our formal proof is a little different than
this, for technical reasons, but this distribution is hard
as well.

We now sketch how to apply the symmetrization
technique to prove that this distribution is indeed hard.
To apply the symmetrization technique, we imagine
giving Alice the input of one of the players, and to Bob
the input of all of the others. Bob plays the coordinator,
so Bob needs to compute the output; the goal is to prove
a lower bound of 2(n) on the communication complexity
between Alice and Bob. What can Bob deduce about
the answer? He can immediately take the OR of all the
vectors that he receives, getting a vector where with
good probability all of the noise bits are equal to 1.
(Recall that we assumed that the number of players is
k > 100logn.) Among the important bits, roughly one
of Alice’s bits is equal to 1, and the goal is to discover
which bit it is. Alice cannot know which coordinates
are important, and in essence we are trying to solve a
problem very similar to Set Disjointness. A lower bound
of Q(n) is easy to get convinced of, since it is similar to
the known lower bounds for set disjointness. Proving it
is not entirely trivial, and requires making some small
modifications to Razborov’s classical lower bound on set
disjointness [30].

We see that the lower bound for this distribution
has to (implicitly) rule out a Slepian-Wolf type upper
bound. This provides some evidence that any lower
bound for the k-OR problem would have to be non-
trivial.

3.1.2 The Proof We prove the lower bound on £-OR
by performing a reduction from the promise version of
the two-party set disjointness problem (2-DISJ) which
we lower-bounded in Lemma 2.2. Given an (z,y) for 2-
DISJ drawn from the hard distribution p, we construct
an input for k-OR. Note that our mapping is not
necessarily one-to-one, that is why we need a lower
bound on the expected distributional communication
complexity of 2-DISJ.

Reduction. We start with Alice’s input set x and
Bob’s input set y from the distribution u, with ¢ = 4.
That is, both  and y have | = n/4 1 bits chosen
at random under the condition that they intersect at
one point with probability 1/4, otherwise they intersect
at no point. For the 2-DISJ problem, we construct k
players’ input sets I, ..., I} as follows. Let z = [n] —y.
Let S&,...,S! be random subsets of size [ from z, and
Sé_l, ceey S,lc_1 be random subsets of size [ — 1 from z.

Let S3,..., 5% be random elements from y.

I1 =X
w.p. 1—1/4

LiG=2. w.p. 1/4

St

LX) k) = { -1 {

S US;

Let g’ be this input distribution for k-OR. If I; (2 < j <

k) contains an element Sjl, then we call this element a
special element.

This reduction can be interpreted as follows: Alice
simulates a random player I;, and Bob, playing as
the coordinator, simulates all the other k£ — 1 players
Ir,...,I;. Bob also keeps a set V' containing all the
special elements that ever appear in I; (j = 2,...,k).
It is easy to observe the following fact.

LEMMA 3.1. All I; (j = 1,...,k) are chosen from the
same distribution.

Proof. Since by definition I; (j = 2,...,k) are chosen
from the same distribution, we only need to show that
I; = z under p is chosen from the same distribution as
any I; is under p'. Given y, note that x is a random set
of size | in z = [n] — y with probability 1/4; and with
the remaining probability x is the union of a random
set of size [ — 1 in z along with a single random element
from y. This is precisely the distribution of each I; for
j>2.0

The following lemma shows the properties of our reduc-
tion.

LEMMA 3.2. If there exists a protocol P’ for k-OR on
input distribution ' with communication complezity
C and error bound e, then there exists a protocol P
for the 2-DISJ on input distribution p with expected
communication complexity O(C/k) and error bound e +
4k /n.

Proof. Let us again view I; (j = 1,...,k) as n-bit
vectors. We show how to construct a protocol P for
2-DISJ from a protocol P’ for k-OR with the desired
communication cost and error bound. P is constructed
as follows: Alice and Bob first run P’ on I,...,I. Let
W C [n] be the set of indices where the results are 1.
Bob checks whether there exists some w € W Ny such
that w € V. If yes, then P returns “yes”, otherwise P
returns “no”.

We start by analyzing the communication cost of
P. Since player I; is chosen randomly from the k
players, and Lemma 3.1 that all players’ inputs are
chosen from a same distribution, the expected amount
of communication between I; (simulated by Alice) and
the other k& — 1 players (simulated by Bob) is at most
a 2/k fraction of the total communication cost of P.



Therefore the expected communication cost of P is at
most O(C/k).

For the error bound, we have the following claim:
With probability at least (1 — 4k/n), there exists a
w € WNy such that w ¢ V if and only if zNy ¢ (). First,
if tNy = 0, then I; = x cannot contain any element
w € V C y, thus the resulting bits in W Ny cannot
contain any special element that is not in V. On the
other hand, we have Pr[(WNy) CV)A(zNy #0)] <
4k /n. This is because (W Ny) C V) and (z Ny # 0)
hold simultaneously if and only if there exist some
5]1 (1 < j < k) such that S]1 € z Ny. According to
our random choices of SJ1 (j =1,...,k), this holds with
probability at most &/l < 4k/n. Therefore if P’ errors
at most &, then P errors at most ¢ + 4k/n. O

Combining Lemma 2.2 and Lemma 3.2, we have the
following theorem.

THEOREM 3.1. D'/*"(k-OR) = Q(nk), for n > 3200k
in the coordinator model.

Proof. If there exists a protocol P’ that computes k-OR
on input distribution g/ with communication complex-
ity o(nk) and error bound 1/800, then by Lemma 3.2
there exists a protocol P that computes 2-DISJ on input
distribution p with expected communication complexity
o(n) and error bound 1/800+4k/n < 1/400, contradict-
ing Lemma 2.2 (when ¢t = 4). O

We discuss the applications of this lower bound to
the distinct elements problem in Section 6.

3.2 Multiparty AND/OR with a Blackboard
Denote the k-OR problem in the blackboard model by
k-OR-board. The general idea to prove a lower bound
for k-OR-board is to perform a reduction from a 2-
party bit-wise OR problem (2-OR for short) with public
randomness. The 2-OR problem is the following. Alice
and Bob each have an n-bit vector drawn from the
following distribution: Each bit is 1 with probability
1/k and 0 with probability 1—1/k. They also use public
random bits to generate another (k — 2) n-bit vectors
such that each bit of these vectors is 1 with probability
1/k and 0 with probability 1 — 1/k. That is, the bits
are drawn from the same distribution as their private
inputs. Let v be this input distribution. Alice and Bob
want to compute bit-wise OR of all these k n-bit vectors.
For this problem we have the following theorem.

THEOREM 3.2. E[D}/*(2-OR)] = Q(n/k - log k).

Proof. W.l.o.g., let us assume that Bob outputs the final
result of 2-OR. It is easy to see that if we take the bit-
wise OR of the (k—2) n-bit vectors generated by public

random bits and Bob’s input vector, the resulting n-
bit vector b will have at least a constant density of 0
bits with probability at least 1 — o(1), by a Chernoff
bound. Since Bob can see the k — 2 public vectors, to
compute the final result, all that Bob has to know are
bits of Alice’s vector on those indices i (1 < i < n)
where bi] = 0. In other words, with probability at
least 1 — o(1), Bob has to learn a specific, at least
constant fraction of bits in Alice’s vector up to error
1/3. Plugging in Lemma 2.1 with p = 1/k, we know
that the expected communication complexity is at least
(I1-0(1)) -Qn/k-logk) =Q(n/k-logk). O

We reduce this problem to k-OR-board as follows:
Alice and Bob each simulates a random player, and they
use public random bits to simulate the remaining k& — 2
players: The (k — 2) n-bit vectors generated by their
public random bits are used as inputs for the remaining
k — 2 random players. Observe that the input of all
the k players are drawn from the same distribution,
thus the k players are symmetric. Consequently, the
expected amount of communication between the two
random players simulated by Alice and Bob and other
players (including the communication between the two
random players) is at most O(1/k) faction of the total
communication cost of protocol for k-OR-board. We
have the following theorem.

THEOREM 3.3. Dy/®(k-OR-board) = Q(n - logk).

Proof. Tt is easy to see that if we have a protocol for the
k-OR-board on input distribution v with communication
complexity o(n - logk) and error bound 1/3, then we
have a protocol for 2-OR on input distribution v with
expected communication complexity o(n/k - logk) and
error bound 1/3, contradicting Theorem 3.2. OJ

It is easy to show a tight deterministic upper bound
of O(nlogk) for this problem in the blackboard model:
each player speaks in turn and writes the coordinates
where he has 1 and no player that spoke before him had
1.

3.3 Majority In the k-MAJ problem, we have k
players, each having a bit vector of length n, and they
want to compute bit-wise majority, i.e. to determine for
each coordinate whether the majority of entries in this
coordinate are 1 or 0. We prove a lower bound of Q(nk)
for this problem in the coordinator model by a reduction
to 2-BITS via symmetrization.

For the reduction, we consider k = 2¢+1 players and
describe the input distribution 7 as follows. For each
coordinate we assign it either ¢ or (¢t 4+ 1), each with
probability 1/2, independently over all coordinates.



This indicates whether the k players contain ¢ or (¢+1) 1
bits among them in this coordinate, and hence whether
that index has a majority of 0 or 1, respectively. Then
we place the either ¢ or (¢ + 1) 1 bits randomly among
the k players inputs in this coordinate. It follows that
under 7: (i) each player’s bits are drawn from the
same distribution, (ii) each bit of each player is 1 with
probability 1/2 and 0 with probability 1/2, and (iii) each
index has probability 1/2 of having a majority of 1s.

THEOREM 3.4. Di/G(k-MAJ) = Q(nk) in the coordina-
tor model.

Proof. Now we use symmetry to reduce to the two-
player problem 2-BITS. Alice will simulate a random
player under 7 and Bob simulate the other k—1 players.
Notice that, by (ii) any subset of n’ indices of Alice’s
are from (/5. We will show that Alice and Bob need to
solve 2-BITS on Q(n) bits to solve k-MAJ. And, by (i),
since all players have the same distribution and Alice is
a random player, her expected cost in communicating
to Bob is at most O(C/k) if k-MAJ can be solved in C
communication.

Now consider the aggregate number of 1 bits Bob
has for each index; he has (¢t —1) 1 bits with probability
1/4, t 1 bits with probability 1/2, and (¢ + 1) 1 bits
with probability 1/4. Thus for at most (3/4)n indices
(with probability at least 1 — exp(—2(n/4)?/n) = 1 —
exp(—n/8) > 1—1/7) that have either (t — 1) or (t+1)
1 bits Bob knows that these either will or will not
have a majority of 1 bits, respectively. But for the
other at least n/4 = Q(n) remaining indices for which
Bob has exactly t 1 bits, whether or not these indices
have a majority of 1 bits depends on Alice’s bit. And
conditioned on this situation, each of Alice’s relevant
bits are 1 with probability 1/2 and 0 with probability
1/2, hence distributed by (/2. Thus conditioned on at
least n/4 undecided indices, this is precisely the 2-BITS
problem between Alice and Bob of size n/4.

Thus a protocol for k-MAJ in o(nk) communication
and error bound 1/6 would yield a protocol for 2-
BITS in expected o(n) communication and error bound
1/6 + 1/7 < 1/3, by running the protocol simulated
between Alice and Bob. This contradicts Lemma 2.1,
and proves that k-MAJ requires 2(kn) communication
when allowing error on at most 1/6 fraction of inputs.
O

Extensions.

This lower bound can easily be extended beyond
just majority (threshold 1/2) to any constant threshold
¢(0 < ¢ < 1), by assigning to each coordinate either
|k¢| or (|k¢| + 1) 1 bits with probability 1/2 each.

Let 74 denote this distribution. Then the analysis just
uses (g in place of (; /2, which also yields an €2(n) lower
bound for 2-BITS. We call this extended k-MAJ problem
(k, ®)-MAJ.

COROLLARY 3.1. Diq/fs((k, $)-MAJ) = Q(nk) for any
constant ¢(0 < ¢ < 1) in the coordinator model.

We discuss the applications of this lower bound to
the heavy-hitter problem in Section 6.

4 Graph Connectivity

In the k-CONN problem, we have k players, each having
a set of edges in an n-vertex graph. The goal is to
decide whether the graph consisting of the union of
all of these edges is connected. In this section we
prove an Q(nk/log? k) lower bound for k-CONN in the
coordinator model, by performing a symmetry-based
reduction from 2-DISJ.

4.1 Proof Idea and the Hard Distribution Let
us start by discussing the hard distribution. Assume
for simplicity & > 100logn. We describe a hard
distribution which is not quite the same as the one in
the proof (due to technical reasons), but is conceptually
clearer. In this hard distribution, we consider a graph
G, which consists of two disjoint cliques of size n/2. We
also consider one edge between these two cliques, called
the comnector; the connector is not part of G. Each
player gets as input n/10 edges randomly and uniformly
chosen from the graph G; furthermore, with probability
1/2 we choose exactly one random edge in one random
player’s input, and replace it by the connector. It is
easy to see that if one of the players got the connector,
then with high probability the resulting set of edges
span a connected graph, and otherwise the graph is not
connected.

To get convinced that the lower bound holds, notice
that the coordinator can easily reconstruct the graph
G. However, in order to find out if one of the players
has received the connector, the coordinator needs to
speak with each of the players to find this out. The
situation is roughly analogous to the situation in the
k-OR problem, since the players themselves did not get
enough information to know G, and no Slepian-Wolf
type protocol is possible since the edges received by each
player are random-looking. The actual distribution that
we use is somewhat more structured than this, in order
to allow an easier reduction to the 2-player disjointness
problem.

4.2 The Proof We first recall 2-DISJ. Similarly to
before, in 2-DISJ, Alice and Bob have inputs z (|| = ¢)
and y (Jy] = £) chosen uniformly at random from



[n] (n = 4¢—1), with the promise that with probability
1/10k, |xNy| = 1 and with probability 1 — 1/10k,
|z Ny| = 0. Let ¢ be this input distribution for 2-DISJ.
Now given an input (z,y) for 2-DISJ, we construct an
input for k-CONN.

Let Ko, = (V,E) be the complete graph with
2n vertices. Given Alice’s input x and Bob’s input
y, we construct k players’ input Iy,...,I; such that
|I;] = ¢ and I; C E for all 1 < j < k. We first
pick a random permutation o of [2n]. Alice constructs
I = {(0(2i — 1),0(20)) | i € 2}

Bob constructs I, ..., I;. It is convenient to use o
and y to divide V into two subsets L and R. For each
i (1 <i<n),ifi€ y, then with probability 1/2, we
add 0(2¢ — 1) to L and ¢(2i) to R; and with the rest of
the probability, we add o(2¢ — 1) to R and o(2i) to L.
Otherwise if 4 ¢ y, then with probability 1/2, we add
both ¢(2i — 1) and ¢(2¢) to L; and with the rest of the
probability, we add both ¢(2i — 1) and 0(2i) to R. Let
K; = (L,FEr) and K = (R, Er) be the two complete
graphs on sets of vertices L and R, respectively. Now
using Er and Er, Bob can construct each I;. With
probability 1 — 1/10k I; is a random subset of disjoint
edges (i.e. a matching) from Ep U Eg of size ¢; and
with probability 1/10k, I; is a random subset of disjoint
edges from Ep, U ER of size £ — 1 and one random edge
from E\ (EL U ER).

Let ¢’ be the input distribution for k-CONN defined
as above for each I; (1 < j < k). We define the following
two events.

&1: Both edge-induced subgraphs U;?:QIJ' N Er and
U;?’:QIJ» () Er are connected, and span L and R re-
spectively.

&o: US_,I; N E is not connected.

It is easy to observe the following two facts by our
construction.

LEMMA 4.1. AllI; (j = 1,...,k) are chosen from the
same distribution.

Proof. Since o is a random permutation of [2n], accord-
ing to the distribution ¢’, Bob’s input can also seen
as follows: With probability 1 — 1/10k, it is a random
matching of size ¢ from Ej U Eg; and with probability
1/10k, it is a matching consists of £ — 1 random edges
from Er UFER and one random edge from E\(ELUER),
which is (¢(2z — 1),0(22)) where z =z Ny. O

LEMMA 4.2. & happens with probability at least 1 —
1/2n when k > 681nn + 1.

Proof. (This is a proof sketch; full proof in Appendix
C.) First note that by our construction, both |L| and

|R| are Q(n) with high probability. To locally simplify
notation, we consider a graph (V, E) of n nodes where
edges are drawn in (k — 1) > 681lnn rounds, and each
round n/4 disjoint edges are added to the graph. If
(V, E) is connected with probability (1—1/4n), then by
union bound over U§:2Ij N Er and U;‘-’:QI]» NErg, & is
true with probability (1 —1/2n). The proof follows four
steps.

(S1) Using the first 28 Inn rounds, we can show that all
points have degree at least 81lnn with probability
at least 1 —1/12n.

(S2) Conditioned on (S1), any subset S C V of h < n/10
points is connected to at least min{hlnn,n/10}
distinct points in V' \ S, with probability at least

1—1/n%

Iterate (S2) Inn times to show that there must be
a single connected component Sg of size at least
n/10, with probability at least 1 — 1/12n.

Conditioned on (S3), using the last 401nn rounds
we can show that all points are connected to Sg
with probability at least 1 —1/12n. O

The following lemma shows the properties of our reduc-
tion.

LEMMA 4.3. Assume k > 100logn. If there exists
a protocol P’ for k-CONN on input distribution ¢’
with communication complexity C and error bound e,
then there exists a protocol P for the 2-DISJ on input
distribution ¢ with expected communication complezity
O(C/k -logk) and error bound 2e + 1/2000k.

Proof. In P, Alice and Bob first construct {Iy,..., I}
according to our reduction, and then run the protocol
P’ on it. By Lemma 4.2 we have that & holds with
probability at least 1 — 1/2n. And by our construction,
conditioned on that & holds, & holds with probability
at least (1 — 1/10k)*=% > 1 — 1/10. Thus the input
generated by a random reduction encodes the 2-DISJ
problem with probability at least (1 —1/2n — 1/10) >
8/9. We call such an input a good input. We repeat the
random reduction clogk times (for some large enough
constant ¢) and run P’ on each of the resulting inputs
for k-CONN. The probability that we have at least one
good input is at least 1 — 1/2000k (by picking c large
enough). If this happens, Bob randomly pick an input
among those good ones and the result given by running
protocol P’ on that input gives the correct answer for
2-DISJ with probability at least 1 — 2e, by a Markov
inequality, since by our reduction at least a 8/9 fraction
of inputs under ¢’ are good and P’ has error bound ¢
under ¢’. Therefore we obtained a protocol P for 2-DISJ



with expected communication complexity O(C/k-log k)
and error bound 2 + 1/2000k. O

Combining Lemma 2.2 and Lemma 4.3, we have the
following theorem.

THEOREM 4.1. D) **** (k-CONN) = Q(nk/logk), for
k > 100logn in the coordinator model.

Proof. If there exists a protocol P’ that computes k-
CONN with communication complexity o(nk/log k) and
error 1/4000k, then by Lemma 3.2 there exists a proto-
col P that computes 2-DISJ with expected communica-
tion complexity o(n) and error at most (2 - 1/4000k +
1/2000k) = 1/1000k, contradicting Lemma 2.2 (when
t=10k). O

Finally, we RY/3(k-CONN) >
Q(R/4000k (L_CONN)/ log k) >
1/4000k 2
QD (k-CONN)/logk) > Q(nk/log“k) as an

immediate consequence.

have

The hardness of the graph connectivity problem
may indicate that most graph problems in the coor-
dinator model or message-passing model do not have
efficient solutions other than trivial ones.

5 Some Direct-Sum-Like Results

Let f: X XY — Z be an arbitrary function. Let p be a
probability distribution over X x ). Consider a setting
where we have k + 1 players: Carol, and Py, Ps, ..., Pg.
Carol receives an input from z € X and each P; receives
an input y; € Y. Let R*(f*) denote the randomized
communication complexity of computing f on Carol’s
input and each of the k other players’ inputs respec-
tively; i.e., computing f(z,y1), f(z,92),-.., f(z, yk)-
Our direct-sum-like theorem in the message-passing
model states the following.

THEOREM 5.1. In the message-passing model, for any
function f : X x Y — Z and any distribution @ on
X x Y, we have RE(f*) > Q(k - E[D;()])-

Note that this is not a direct-sum theorem in the
strictest sense, since it relates randomized communica-
tion complexity to expected distributional complexity.
However, it should probably be good enough for most
applications. The proof of this theorem is dramatically
simpler than most direct-sum proofs known in the lit-
erature (e.g. [6]). This is not entirely surprising, as it
is weaker than those theorems: it deals with the case
where the inputs are spread out over many players,
while in the classical direct-sum setting, the inputs are
only spread out over two players (this would be anal-
ogous to allowing the players P; to communicate with

each other for free, and only charging them for speaking
to Carol). However, perhaps more surprisingly, optimal
direct-sum results are not known for most models, and
are considered to be central open questions, while the
result above is essentially optimal. Optimal direct-sum
results in 2-player models would have dramatic conse-
quences in complexity theory (see e.g. [21] as well as
[28]), so it seems interesting to check whether direct-
sum results in multiparty communication could suffice
for achieving those complexity-theoretic implications.

Proof. Given the distribution g on X x ), we construct
a distribution v on X x Y*. Let p, be the marginal
distribution on Y induced by p condition on X = z.
We first pick (z,y1) € X x Y according to u, and then
pick yo, ..., yr independently from ) according to p, .
We show that D5 (f*) > Q(k - E[D%(f)]). The theorem
follows by Yao’s min-max principle.

Suppose that Alice and Bob get inputs (u,w) from
X x ) according to pu. We can use a protocol for
f* to compute f(u,w) as follows: Bob simulates a
random player in {P;,...,P;}. W.lo.g, say it is P.
Alice simulates Carol and the remaining k& — 1 players.
The inputs for Carol and Py,..., P, are constructed as
follows: * = u, y; = w and ys, ...,y are picked from
Y according to p, (Alice knows uw and p so she can
compute p,). Let v be the distribution of (z,y1,...,yx)
in this construction. We now run the protocol for f¥ on
Z, Y1, .-, Yk The result also gives f(u,w).

Since y1, ...,y are chosen from the same distribu-
tion and P, is picked uniformly at random from the k
players other than Carol, we have that in expectation,
the expected amount of communication between P; and
{Carol, Ps,..., P}, or equivalently, the communication
between Alice and Bob according to our construction, is
at most a 2/k fraction of the total communication of the
(Dk—i— 1)-player game. Thus DS(f*) > Q(k - E[D;(f)])-

5.1 With Combining Functions In this section we
extend Theorem 5.1 to the complexity of the AND/OR
of k copies of 0/1 function f. Similar to before, AND
and OR are essentially the same so we only talk about
OR here. Let R*(f£z) denote the randomized commu-
nication complexity of computing f(x,y1) V f(z,y2) V
oV fx k).

THEOREM 5.2. In the message-passing model, for any
function f : X x Y — {0,1} and every distribution
poon X x Y such that u(f~1(1)) < 1/10k, we have
R/A(fER) = Q(k/log(1/e) - E[D;,(f)]).-

Proof. The proof is similar as that for Theorem 5.1.
The reduction is the same as that in the proof of Theo-
rem 5.1. Let D§/4(f(’3R) = C. Note that if u(f~1(1)) <



1/10k, then with probability (1 — 1/10k)k= > 0.9, we
have f&x(z,y1,...,yx) = f(u,w). We can boost this
probability to (1 — ¢/2) by repeating the reduction for
O(log1/¢) times and then focus on a random good in-
put (if any), as we did in the proof of Lemma 4.3. The
k-player protocol on a random good input succeeds with
probability at least 1 — 2 - ¢/4, by a Markov inequality.
Therefore we have a protocol for f with expected com-
munication complexity O(log1/¢-C/k) and error bound
(2-e/4+¢€/2)=¢. 0O

It would be interesting to generalize this to other
combining functions such as majority, XOR and others.
One can also use symmetrization to prove similar
direct-sum results for other settings. One such setting is

when there are 2k players: k players that get z1,...,zx
and k players that get yi,...,yr, and the goal is to
compute f(xh yl)ﬂ f(‘TQa y2)7 RN f(xkn yk) Another

setting is the same except that there are only k£ + 1
players, and Carol receives all of the inputs z1, ..., zg.
We omit the details here. Versions of direct-sum in the
blackboard model are also possible for some of these
settings.

6 Applications

We now consider applications where multiparty com-
munication complexity lower bounds such as ours are
needed. As mentioned in the introduction, our multi-
party communication problems are strongly motivated
by research on the server-site model and the more gen-
eral distributed streaming model. We discuss three
problems here: the heavy hitters problem, which asks
to find the approximately most frequently occurring
elements in a set which is distributed among many
clients; the distinct elements problems, which lists the
distinct elements from a fixed domain where the ele-
ments are scattered across distributed databases possi-
bly with multiplicity; and the e-kernel problem, which
asks to approximate the convex hull of a set which is
distributed over many clients.

Distinct elements. Consider of domain of n possible
elements and k distributed databases each which con-
tains a subset of these elements. The exact distinct
elements problem is to list the set of all distinct el-
ements from the union of all elements across all dis-
tributed databases. This is precisely the k-OR problem
and follows from Theorem 3.1, since the existence of
each element in each distributed data point can be sig-
nified by a bit, and the bit-wise OR represents the set
of distinct elements.

THEOREM 6.1. For a set of k distributed databases,
each containing a subset of n elements, it requires Q(nk)

communication total between the databases to list the set
of distinct elements with probability at least 2/3.

e-Kernels. Given a set of n points P C R?, the width
in direction u is denoted by

peP

wid(P, u) = (max<p, u)) - (géi]g(p, u>) ;

where (-,-) is the standard inner product operation.
Then an e-kernel [2, 1] K is a subset of P so that for
any direction u we have

wid(P, u) — wid(K, u) < e - wid(P, u).

An e-kernel K approximates the convex hull of a point
set P, such that if the convex hull of K is expanded in
any direction by an e-factor it contains P. As such,
this coreset has proven useful in many applications
in computational geometry such as approximating the
diameter and smallest enclosing annulus of point sets [2,
1]. It has been shown that e-kernels may require
Q(1/e4=1/2) points (on a (d — 1)-sphere in R?) and
can always be constructed of size O(1/¢(?~1/2) in time
O(n +1/93/2) [35, 8].

We can note a couple of other properties about e-
kernels. Composibility: If K,..., Ky are e-kernels of
Py, ..., Py, respectively, then K = Ule K; is an e-
kernel of P = Ule P;. Transitivity: If Ky is an &1-
kernel of P and Ky is an ego-kernel of K7, then K5 is
an (g1 + e2)-kernel of P. Thus it is easy to see that
each site ¢ can simply send an (¢/2)-kernel K; of its
data of size n. = O(1/(4=1/2) to the server, and the
server can then create and (¢/2)-kernel of Ule K; of
size O(1/(@=1D/2) This is asymptotically optimal size
for and e-kernel of the full distributed data set. We next
show that this procedure is also asymptotically optimal
in regards to communication.

THEOREM 6.2. For a distributed set of k sites, it re-
quires Q(k/e@=1/2) communication total between the
sites and the server for the server to create an e-kernel
of the distributed data with probability at least 2/3.

Proof. We describe a construction which reduces k-OR
to this problem, where each of k players has n. =
O(1/£4=1/2) bits of information. Theorem 3.1 shows
that this requires Q(n.k) communication.

We let each player have very similar data P; =
{pi1,---,Pin.}, each player’s data points lie in a unit
ball B = {q € R? | ||q|| < 1}. For each player, their n.
points are in similar position. Each player’s jth point
D;,; is along the same direction uj, and its magnitude
is either ||p; ;|| = 1 or ||p; ;|| = 1 — 2e. Furthermore,



the set of directions U = {u;} are well-distributed such
that for any player ¢, and any point p; ; that P; \ p;
is not an e-kernel of P;; that is, the only e-kernel is the
full set. The existences of such a set follows from the
known lower bound construction for size of an e-kernel.

We now claim that the k-OR problem where each
player has n. bits can be solved by solving the dis-
tributed e-kernel problem under this construction. Con-
sider any instance of k-OR, and translate to the e-kernel
problem as follows. Let the jth point p;; of the ith
player have norm ||p; ;|| = 1 when jth bit of the player
is 1, and have norm ||p; ;|| = 1—2¢ if the jth bit is 0. By
construction, an e-kernel of the full set must acknowl-
edge (and contain) the jth point from some player that
has such a point with norm 1, if one exists. Thus the
full e-kernel encodes the solution to the k-OR problem:
it must have n. points and, independently, the jth point
has norm 1 if the jth OR bit is 1, and has norm 1 — 2¢
if the jth OR bit is 0. O

Heavy Hitters. Given a multi-set S that consists
of n elements, a threshold parameter ¢, and an error
parameter e, the approzimate heavy hitters problem
asks for a set of elements which contains all elements
that occur at least ¢ times in .S and contains no elements
that occur fewer than ¢(1 — &) times in S. On a static
non-distributed data set this can easily be done with
sorting. This problem has been famously studied in
the streaming literature where the Misra-Gries [27] and
SpaceSaving [25] summaries can solve the problem in
O(1/e) space. In the distributed setting the best known
algorithms use random sampling of the indices and
require either O((1/2)nlogn) or O(k + Vkn/e - logn)
communication to guarantee a correct set with constant
probability [19]. We will prove a lower bound of Q(n/¢)
and leave tightening this bound as an open problem.

We now present a specific formulation of the approx-
imate heavy hitters problem as (k, ¢,e)-HH as follows.
Consider k players, each with a bit sequence (either 0
or 1) of length n where each coordinate represents an
element. The goal is to answer YES for each index with
at least ¢k elements, NO for each index with no more
than ¢k(1 —€) elements, and either YES or NO for any
count in between. The reduction is based on a distribu-
tion 74 where independently each index has either ¢k
or ¢pk(1 —¢) 1 bits, each with probability 1/2. In the
reduction the players are grouped into sets of ke players
each, and all grouped players for each index are either
given a 1 bit or all players are given a 0 bit. These 1 bits
are distributed randomly among the 1/¢ groups. The
proof then uses Corollary 3.1.

THEOREM 6.3. DX ((k, ¢,)-HH) = Q(n/e).

Proof. To lowerbound the communication for (k, ¢, e)-
HH we first show another problem is hard: (1/e,¢)-
HH (assume 1/e is an integer). Here there are only
1/e players, and each player at each index has a count
of 0 or ke, and we again want to distinguish between
total counts of at least k¢ (YES) and at most k¢(1 —¢)
(NO). By distribution 74, each index has a total of
either k¢ or k¢(1 — €) exactly. And then we distribute
these bits to players so each player has precisely either
0 or ke at each index. When k is odd, this is precisely
the (1/e, $)-MAJ problem, which by Corollary 3.1 takes
Q(n/e) communication.

Now it is easy to see that D%i((l/e,qS)—HH) <
D%i((k, ¢,€)-HH), since the former on the same input
allows (1/¢) sets of ke players to talk to each other at
no cost. [J

7 Conclusions and Open Problems

In this paper we have introduced the symmetrization
technique, and have shown how to use it to prove
lower bounds for k-player communication games. This
technique seems widely applicable, and we expect future
work to find further uses.

7.1 A Brief Comparison to the icost Method
In this section we make a brief comparison between
our symmetrization method and the celebrated icost
method by [5]. Readers who are familiar with the
icost method may notice that the k-XOR, k-MAJ and
blackboard k-OR/AND problems discussed in this paper
can also be handled by the icost method. However,
for problems whose complexities are different in the
blackboard model and the message-passing model, e.g.,
k-OR and k-CONN, the icost method cannot be used to
obtain tight lower bounds in the message-passing model,
while the symmetrization method still applies.

If we view the input to k players as a matrix with
players as rows each having an n-bit input, the icost
method first “divides” the whole problem to n copies
of primitive problems column-wise, and then analyzes
a single primitive problem. While the symmetrization
method first reduces the size of a problem in the row
space, that is, it first reduce a k-player problem to a 2-
player problem, and then analyze the 2-player problem.
We can certainly use the icost method again when
analyzing the resulting 2-player problem, which gives
us an elegant way to combine these two techniques.

7.2 Limitations The symmetrization technique also

has several limitations, which we wish to discuss here.
Firstly, there are problems that might be impossible

to lower bound using symmetrization. Consider for



example the k-player disjointness problem, where each
player gets a subset of {1,...,n}, and the goal is to
decide whether there is an element that appears in
all of the sets. This problem looks to be easier than
the coordinate-wise AND problem. But we believe
that this problem has a communication lower bound
of Q(nk) in the coordinator model as well. However,
it seems impossible to prove this lower bound using
symmetrization, for the following reason. Suppose we
give Alice the input of a randomly-chosen player p;, and
give Bob the inputs of all the other players. It seems
that for any symmetric input distribution, this problem
can be solved using O(nlogk/k) bits in expectation,
which is much lower than the Q(n) lower bound we
are aiming for. It is not out of the question that some
variant of the symmetrization technique can be used to
get the Q(nk) lower bound, but we do not know how
to do it, and it might well be impossible. We leave this
problem as an intriguing open question.

The second limitation is that symmetrization seems
to require proving distributional lower bounds for 2-
player problems, over somewhat-convoluted distribu-
tions. This presents some difficulty for the researcher,
who needs to start proving lower bounds from scratch
and cannot use the literature, since lower bounds in the
literature are proved for other distributions. Yao’s min-
imax principle cannot be used, since it only guarantees
that there is some hard distribution, but it doesn’t guar-
antee anything for the distribution of interest. This is
often only a methodical difficulty, since it is often easy
to get convinced that the distribution of interest is in-
deed hard, but a proof of this must still be found, which
is a tedious task. It would be useful if these was some
way to circumvent this difficulty, for example by finding
a way that standard randomized lower bounds can be
used.

The third limitation is that in order to use sym-
metrization, one needs to find a hard distribution for
the k-player problem which is symmetric. This is usu-
ally impossible when the problem itself is not symmet-
ric, i.e. when the players have different roles. For ex-
ample, one could envision a problem where some of the
players get as input elements of some group and the rest
of the players get as input integers. However, note that
for such problems, symmetrization can still be useful in
a somewhat-generalized version. For example, suppose
there are two sets of players: in set P, the players get
group elements, and in set P’, the players get integers.
Assume each of the sets contains exactly k/2 players.
To use symmetrization, we would try to find a hard dis-
tribution that is symmetric inside of P and also inside of
P’; namely, a distribution where permuting the players
inside P has no effect on the distribution, and simi-

larly for permuting the players inside P’. Then, to use
symmetrization we can have Alice simulate two random
players, p; and p;, where p; is from P and p; is from
P’; Bob will simulate all the rest of the players. Now
symmetrization can be applied. If, alternatively, the set
P contained just 3 players and P’ contained k — 3 play-
ers, we can have Alice simulate one of the players in
P’, Bob can simulate the rest of the players in P/, and
either Alice or Bob can play the three players from P.
As can be seen, with a suitable choice of distribution,
it should still be possible to apply symmetrization to
problems that exhibit some amount of symmetry.

The main topic for future work seems to be to find
more setting and problems where symmetrization can
prove useful. Since discovering this approach we have
found repeatedly that problems that we encounter in
other settings seem susceptible to this approach, and
we think it has the potential to be a widely useful tool.

7.3 List of Problems Symmetrization is a tech-
nique that can be applied to a wide range of k-player
communication problems, as well as having many possi-
ble applications in related models. Any problem which
has a symmetric hard-looking distribution is a good can-
didate. Below is a list of candidate problems, some of
which we lower-bound in this paper, and some that we
leave for future work. This list is far from exhaustive.

o (Coordinate-wise problems: Fach player gets a vec-
tor of length n. Some symmetric coordinate-wise
function g : {0,1}¥ — {0,1} is applied, resulting
in a length n vector. Then a “combining function”
h:{0,1}™ — Z is applied to the bits of the result.
Z could be any output domain. In the examples
we dealt with in this paper, g was AND, OR, XOR
or MAJ, and h was typically the identity function.
k-player disjointness is the case when g is AND and
h is OR. We believe that for most choices of g and
h that are non-constant symmetric functions, the
complexity of this problem is Q(nk). It might be
interesting to conjecture this holds for any such h
and g.

e Fquality: Each player gets a vector of length n,
and the goal is to decide whether all players have
received the same vector. Another variant is to
decide whether all players have received distinct
vectors. This problem should have a lower bound
of Q(nk) in the coordinator model, with a proof
using symmetrization; we defer the details to a later
version.

e Graph problems: Fach player gets a set of m edges
in an n-vertex graph, and the goal is to compute



some graph property of the graph that consists
of all of the edges in the input. In this paper
we treat this problem when the graph property
is connectivity. Obviously, many other properties
could be interesting.

Pointer Chasing: Each player has a set of directed
edges in an n-vertex graph, where for each vertex
v, only one player has an edge whose source is v.
The “sink” of the instance is the vertex obtained by
starting at vertex number 1 and walking according
to the directed edges until reaching a vertex with
no outgoing edges. We assume there is always a
sink, and the goal is to find it.
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A Omitted Proof for 2-BITS
Lemma 2.1 (restated). E[DéZS(Q-BITS)] =
Q(nplog(1/p)).

Proof. Here we will make use of several simple tools
from information theory. Given a random variable
X drawn from a distribution g, we can measure the
amount of randomness in X by its entropy H(X) =
—> . i(x)logy p(x). The conditional entropy H(X |
Y)=H(XY)— H(Y) describes the amount of entropy
in X, given that Y exists. The mutual information
I(X :Y) = HX)+ HY) — HXY) measures the
randomness in both random variables X and Y.

Let P be any valid communication protocol. Let
X be Alice’s (random) input vector. Let Y be Bob’s
output as the Alice’s vector he learns after the commu-
nication. Let IT be the transcript of P. Let ¢ = 1/3 be
the error bound allows by Bob. First, since after run-
ning P, with probability at least 1 —e, we have Y = X,
thus Bob knows X. Therefore

I(X:Y | T) < eH(X).

Consequently,
eH(X) > I(X:Y|II)
= HX[I)+HY [II) - H(XY |II)
= H(XI) - H(II) + H(YI) — H(II)
~(H(XYTI) - H(ID)
H(XII)+ H(YIl) - H(XYTI) — H(II)
= I(XII:YI) - H(II)
> (1—<)H(XTI) — H(Il
> (1-2)H(X) - H(II)
Therefore, E[II]] > HI) > (1 — 20)H(X) >

Q(nH(p)) = Qnplog(1/p)). O

B Omitted Proofs for the Biased 2-party Set
Disjointness
Lemma 2.2 (restated). When u has |z Ny| =1 with
probability 1/t then E [D,l/ 1OOt(z-D/SJ)] = Q(n).
The proof is based on [30]. Before giving the proof,

we first introduce some notations and a key technical
lemma. Define

A=A{(zy) : (Wz,y) >0)A(zny=0)}
and
B={(z,y) : (u(z,y)>0)A(@ny#0)}.
Thus u(A) = 1 — 1/t and u(B) = 1/t. We need the

following key lemma, which is an easy extension of the
main lemma in Razbarov [30] by rescaling the measures
on the YES and NO instances.

LEMMA B.1. [30] Let A, B, i be defined as above. Let
R = C x D be any rectangle in the communication

protocol. Then we have u(BN R) > 1/40t - u(AN R) —
270.01n.

Proof. (for Lemma 2.2) Let R = {Ry,...,R:} be the
minimal set of disjoint rectangles in which the protocol
outputs “1”, i.e, z Ny = (. Imagine that we have a
binary decision tree built on top of these rectangles.
If we can show that there exists @ C R such that
1(Ug,eo Ri) = 0.5 u(Ug,er Ri) and each of R; € O
lies on a depth at least 0.005n in the binary decision
tree, then we are done. Since u(Ug, co Ri) > 0.5 -
W(Ug,er Ri) > 0.5 - (u(A) — 1/100t) = (1) and
querying inputs in each rectangle in O costs (n) bits.
We prove this by contradiction. Suppose that
there exists O C R such that u(Ug,co Ri) > 0.5 -
1(Ug,er Ri) and each of R; € O’ lies on a depth less
than 0.005n in the binary decision tree. We have the

following two facts.
1. There are at most 209957 disjoint rectangles that

lie on depths less than 0.005n, i.e., |O'] < 20-0057,
2. (Ug,eo (RN A)) >0.5—1/100t.

Combining the two facts with Lemma B.1 we reach the
following contradiction of our error bound.

L (U(RmB)) 2u< U (RmB))
R0’

=1
> Y (1/40t - p(R; N A) — 2700t
R, €0’
>1/40¢ - (0.5 — 1/100t) —
>1/1000)

20.005n . 2—0.0171



C Onmitted Proofs Graph Connectivity

We provide here a full proof for the probability of the
event &1, that both subset of the graph L and R are
connected.

Lemma 4.2 (restated). & happens with probability
at least 1 — 1/2n when k > 68Inn + 1.

Proof. First note that by our construction, both |L| and
|R| are Q(n) with high probability. To locally simplify
notation, we consider a graph (V, E) of n nodes where
edges are drawn in (k — 1) > 681lnn rounds, and each
round n/4 disjoint edges are added to the graph. If
(V, E) is connected with probability (1—1/4n), then by
union bound over U¥_,I; " Er, and U¥_,I; N ER, & is
true with probability (1 —1/2n). The proof follows four
steps.

(S1): All points have degree at least 8Inn. Since for each
of k rounds each point’s degree increases by 1 with
probability 1/2; then the expected degree of each
point is 14logn after the first 28Inn rounds. A
Chernoft-Hoeffding bound says that the probability
that a point has degree less than 8lnn is at most
2exp(—2(61nn)?/ (14lnn)) < 2exp(—5lnn) <
2/n® < 1/12n2. Then by the union bound, this
holds for none of the n points with probability at
least 1 — 1/12n.

(S2): Conditioned on (S1), any subset S C V of

h < n/l0 points is connected to at least

min{hlnn,n/10} distinct points in V '\ S. At least

97n/10 points are outside of S, so each point in S ex-
pects to be connected at least (9/10)81nn > 7lnn
times to a point outside of S. Each of these edges
occur in different rounds, so they are independent.

Thus we can apply a Chernoff-Hoeffding bound to

say the probability that the number of edges out-

side of S for any point is less than 3Inn is at
most 2exp(—2(41nn)?/(81nn)) = 2exp(—41lnn) =

2/n*. Thus the probability that no point in S has

fewer than Inn edges outside S is (since h < n/10)

at most 1/5n3.

If the h - 3Inn edges outside of S (for all h points)
are drawn independently at random, then we need
to bound the probability that these go to more
than n/10 distinct points or hlnn distinct points.
Since the edges are drawn to favor going to distinct
points in each round, it is sufficient to analyze the
case where all of the edges are independent, which
can only increase the chance they collide. In ei-
ther case hlnn < n/10 or hlnn > n/10 each time
an edge is chosen (until n/10 vertices have been
reached, in which case we can stop), 9/10 of all

possible vertices are outside the set of edges al-
ready connected to. So if we select the 3k Inn edges
one at a time, each event connects to a distinct
points with probability at least 9/10, so we expect
at least (9/10)(3h1nn) > 2hlnn distinct points.
Again by a Chernoff-Hoeffding bound, the prob-
ability that fewer than hlnn distinct points have
been reached is at most 2 exp(—2(h1nn)?/(3hn)) <
2exp(—(2/3)hlnn) < 2. exp(—5lnn) < 2/n° <
1/5n? (for h > 8). Together the probability of these
events not happening is at most 1/ 2n2.

(S3): There is a single connected component Sg of size
at least n/10. Start with any single point, we
know from Step 1, its degree is at least 8lnn.
Then we can consider the set S formed by these
h1 = 81Inn points, and apply Step 2 to find another
hilnn = 81n* n = hy points; add these points to S.
The process iterates and at each round h; = 81n‘ n,
by growing only from h; the newly added points.
So, by round ¢ = Inn the set S = Sg has grown
to at least size n/10. Taking the union bound over
these Inn rounds shows that this process fails with
probability at most 1/12n.

(S4): All points in V' \ Sg are connected to Sg. Each
round each point p is connected to Sg with proba-
bility at least 1/20. So by coupon collector’s bound,
using the last 40lnn rounds all points are con-
nected after 2 Inn sets of 20 rounds with probability

at least 1 —1/12n.

By union bound, the probability of steps (S1), (S3), and
(S4) are successful is at least 1—1/4n, proving our claim.
O



