
Visualization of Big Spatial Data using
Coresets for Kernel Density Estimates

Yan Zheng∗

Visa Research
Yi Ou†

Expedia, Inc.
Alexander Lex‡

University of Utah
Jeff M. Phillips§

University of Utah

ABSTRACT

The size of large, geo-located datasets has reached scales where vi-
sualization of all data points is inefficient. Random sampling is a
method to reduce the size of a dataset, yet it can introduce unwanted
errors. We describe a method for subsampling of spatial data suit-
able for creating kernel density estimates from very large data and
demonstrate that it results in less error than random sampling. We
also introduce a method to ensure that thresholding of low values
based on sampled data does not omit any regions above the desired
threshold when working with sampled data. We demonstrate the
effectiveness of our approach using both, artificial and real-world
large geospatial datasets.

Keywords: Spatial data visualization, sampling, big data, coresets.

1 INTRODUCTION

Data is collected at ever-increasing sizes, and for many datasets,
each data point has geo-spatial locations (e.g., either (x,y)-
coordinates, or latitudes and longitudes). Examples include pop-
ulation tracking data, geo-located social media contributions, seis-
mic data, crime data, and weather station data. The availability of
such detailed datasets enables analysts to ask more complex and
specific questions. These have applications in wide ranging ar-
eas including biosurveillance, epidemiology, economics, ecology
environmental management, public policy and safety, transporta-
tion design and monitoring, geology, and climatology. Truly large
datasets, however, cannot be simply plotted, since they typically ex-
ceed the number of pixels available for plotting, the available stor-
age space, and/or the available bandwidth necessary to transfer the
data.

A common way to manage and visualize such large, complex
spatial data is to aggregate it using a kernel density estimate [16, 15]
(KDE). A KDE is a statistically and spatially robust method to repre-
sent a continuous density using only a discrete set of sample points.
Informally, this can be thought of as a continuous average over all
choices of histograms, which avoid some instability issues that arise
in histograms due to discretization boundaries. For a formal defi-
nition, we first require a kernel K : R2×R2 → R; we will use the
Gaussian kernel K(p,x) = e−‖p−x‖2

. Then, given a planar point set
P ⊂ R2, the kernel density estimate is defined at any query point
x ∈ R2 as

KDEP(x) =
1
|P| ∑

p∈P
K(p,x).

This allows regions with more points nearby (i.e., points x with a
large value K(p,x) for many p in P) to have a large density value,

∗e-mail: yanzh.cs@gmail.com; Much of this work was completed while
at the University of Utah.
†e-mail: olly93219@outlook.com; Much of this work was completed

while at the University of Utah.
‡e-mail: alex@sci.utah.edu
§e-mail: jeffp@cs.utah.edu

Figure 1: Crimes from 2006 to 2013 in Philadelphia, the full dataset
(left) with 0.7 million points and a coreset (right) with only 5300 points.
and this function is smooth and in general nicely behaved in several
contexts. Using this function summarizes the data, and avoids the
over-plotting and obfuscation issues demonstrated in Figure 1(left).
However, just computing KDEP(x) for a single value x requires
O(|P|) time. While these values can be precomputed and mapped
to a bitmap, visually interacting with a KDE e.g., to query and filter,
would then require expensive reaggregating.

Towards alleviating these issues, we propose to use coresets for
KDEs. In general, a coreset Q is a carefully designed small sub-
set of a very large dataset P where Q retains properties from P as
accurately as possible. In particular, in many cases the size of Q
depends only on a desired minimum level of accuracy, not the size
of the original dataset P. This implies that even if the full dataset
grows, the size of the coreset required to represent a phenomenon
stays fixed. This also holds when P represents a continuous quan-
tity (like the locus of points along a road network) and Q constitutes
some carefully placed way-points [18]. Figure 1 shows a dataset P
with 700 thousand points and its coreset from all reported crimes in
Philadelphia from 2005-2014. For more details on variations and
constructions, refer to recent surveys [13, 3].

In particular, a coreset for a kernel density estimate is a subset
Q⊂ P [12, 22], with |Q| � |P| so that for some error parameter ε

L∞(KDEP,KDEQ) = max
x∈R2
|KDEP(x)−KDEQ(x)| ≤ ε. (1)

This means that at any and all evaluation points x, the kernel density
estimates are guaranteed to be close. In particular, such a bound on
the worst case error is essential when attempting to find outlier or
anomalous regions; in contrast an average case error bound (e.g.
L1(KDEP,KDEQ)) would allow for false positives and false nega-
tives even with small overall error. Thus, with such a worst-case
bounded coreset Q, we can use KDEQ efficiently without misrepre-
senting the data.

In the rest of this paper we demonstrate two properties of core-
sets used for KDEs that make them pertinent for visual analysis. In
Section 3, we first demonstrate that we can create a coreset that is
more accurate than the naive but common approach of random sam-
pling. Second, very sparse subsets (e.g., from random sampling)
tend to cause anomalous regions of low, but noticeable density;
we introduce a method to counteract this problem in Section 4, by
carefully adjusting the smallest non-zero layer of the correspond-
ing transfer function. Towards demonstrating these insights we de-
sign and present an interactive system for visualizing large, com-
plex spatial data with coresets of kernel density estimates. Based
on these insights, we believe that coresets and kernel density esti-
mates can become an important tool for interactive visual analysis
of large spatial data.

2 RELATED WORK

Visualizing large spatial datasets is a challenge attracting a lot of at-
tention among the visualization community. This has led to the de-
velopment of a variety of research platforms including Polaris [17],
inMens [11], Nanocubes [10] and Gaussian cubes [19]. These sys-
tems all provide a variety of ways of to explore, interact, and ana-
lyze spatial datasets. For interacting with such spatial data purely
based on its density, a kernel density estimate is a necessary and
often the default tool; it is the statistical premise behind a heat map.

Another common theme among visualization systems for large
data is that in order to allow real-time interaction, every single data
point cannot be rendered. The data somehow needs to be com-
pressed, either as a subset, or by some statistical summarization.
This trend denominates efficiency and scalability focused database
projects, such as BlinkDB [1] and STORM [5]. In these systems,
random sampling of data is the core tool since it can be done effi-
ciently and preserves to some degree most relevant statistical prop-
erties of the data.

Figure 2: Screenshot image from STORM [5] showing heatmap/KDE
of tweet density in the USA.

Numerous other sampling schemes have been proposed to reduce
the dataset size for visualization [21, 9]. However, these approaches
do not directly address the preservation of kernel density estimates.
Park et.al. [21] develop heuristics to optimize a measure related to
the inverse of a KDE, and consider mainly data from long strands
of data along road networks. Kim et.al. [9] focus on techniques
for binned, one-dimensional data. Moreover, these approaches are
considerably more complicated than the ones we consider and do
not allow for efficient and stable updates in the parameters of the
KDE.

3 CORESETS CONSTRUCTIONS

When tracking tweets or when analyzing crime in an area, a high
frequency of such events in a sparsely populated area can be an im-
portant pattern to analyze further. If a subset has low error on aver-
age, but has locations with large deviations from the truth, analysis
based on that subset can lead to both false positives and negatives.
This is why the L∞ error, as in equation (1) is the right way to mea-
sure accuracy. Both coresets techniques for KDEs [22] and random
sampling can make such guarantees, but the ones for coresets are
stronger.

1. A random sample Q of size O((1/ε2) log(1/δ)) from a large
set P creates a coreset for kernel density estimates with prob-
ability at least 1−δ [8]. We refer such a method as RS. This
can be implemented in O(|P|) time.

2. There are several techniques to create coresets for kernel
density estimates [8, 22, 12, 4]. The one we use [22] (la-
beled Z-order, described below) results in a coreset of size
O((1/ε) log2.5(1/ε) log(1/δ)), that succeeds with probabil-
ity at least 1−δ , and runs in time O(|P| log |P|) time. This is

roughly a square-root of the size of the random sample tech-
nique. Note that other techniques [12], can in theory reduce
the coreset size to O((1/ε) log0.5(1/ε)); the Z-order method
mimics this approach with something more efficient and with
better constant factors, but a bit worse “in theory.”

While these theoretical bounds are useful guidance for effective-
ness of these techniques, we also demonstrate them empirically in
Figure 3 using Open Street Map Utah highway data. We observer
that indeed Z-order produces a coreset roughly a square-root of the
size of the one produced by RS for the same observed error.

Size RS Err Coreset Err

830 0.035 0.01
1890 0.023 0.005
5000 0.014 0.002

10000 0.01 0.001

Figure 3: Error comparison of random sample (RS) and coresets.

3.1 Coreset method
To generate the coresets, we use the two-dimensional technique
based on space filling curves [22]. A space filling curve [2] puts a
single order on two- (or higher-) dimensional points that preserves
spatial locality. They have many uses in databases for approximate
high-dimensional nearest-neighbor queries and range queries. The
single order can be used for a (one-dimensional) B+-tree, which
provides extremely efficient queries even on massive datasets that
do not fit in memory.

In particular, the Z-order curve is a specific type of space filling
curve that can be interpreted as implicitly ordering points based on
the traversal order of a quad tree. That is if all of the points are
in the range [0,1]2 (or normalized to be so), then the top level of
the quad tree has 4 children over the domains c1 = [0, 1

2]× [0, 1
2],

c2 = [1
2 ,1]× [0, 1

2], c3 = [0, 1
2]× [1

2 ,1], and c4 = [1
2 ,1]× [1

2 ,1]. Each
child’s four children itself divide symmetrically, and so on recur-
sively. Then the Z-order curve visits all points in the child c1, then
all points in c2, then all points in c3, and all points in c4 (in the
shape of a‘Z’); and all points within each child are also visited in
such a Z-shaped order. Thus given a domain containing all points,
this defines a complete order on them, and the order generally pre-
serves spatial locality as well as a quad tree does. Usefully, the
order of two points can be directly compared without knowing all
of the data, so plugging in such a comparison operation, any effi-
cient comparison-based sorting algorithm can be used to sort points
in this order.

To generate the coreset based on the Z-order curve, set k =
O(1

ε
log2.5 1

ε
) and randomly select one point from each Z-order

rank range [(i− 1) |P|k , i |P|k]. The resulting set Q gives an ε-sample
of KDE. Note that this approach is oblivious to the parameters in
the kernel density estimate (the type of kernel, the choice of band-
width, the bitmap on which it is visualized), so it does not need to
be updated if we change these parameters.

3.2 Pre-ordering points
One downside of the above method, is that if we would like to
change the resolution of the coreset, that is increase or decrease
its accuracy by increasing or decreasing its size, we need to repeat
much of the computation. Sorting the |P| points takes O(|P| log |P|)
time, and selecting a coreset from the sorted list would take O(|P|)
time under most implementations and ways of preprocessing the
data.

Rather we propose a more useful way to preprocess the data.
In particular, we can reorder the original dataset P (from the Z-
order to a different ordering) to what we call a priority ordering,

Input: Z-order index 1 2 3 4 5 6 7 x

binary representation 000 001 010 011 100 101 110 111
reverse bits 000 100 010 110 001 101 011 111

after random mask M = 101 101 001 111 011 100 000 110 010
new binary ordering index 6 2 8 4 5 1 7 3

priority ordering index 5 2 7 3 4 1 6 x

Table 1: An example demonstration of using bit-reversal to create a priority ordering. The first line describes the input Zordering index, based on
this sorted order. There are 7 points and one dummy point designated as x. The final line indicates the resulting priority ordering after removing
the dummy point.

so that the first k points in that order are precisely the points to
choose as a coreset of size k. For instance, such a priority ordering
can be created via random sampling: assign each point a random
number, and sort on the points by these random numbers. This
priority ordering has several enticing properties.

• The coreset construction only needs to be done once, and this
can be done offline and in code that lives outside of an inter-
active visualization system. For instance, in our implementa-
tion, this is realized extremely efficiently in low-level C, but
we have built our visualization in JavaScript, Canvas, and D3.
This also makes the visualization system modular, separating
the coreset construction technique, which only needs to pro-
vide a (priority) ordered set of points.

• If we increase the size of the coreset, the new larger coreset
necessarily contains the old smaller one. This increases the
stability of the result, since for instance increasing the size k
by one point, only changes the coreset by 1 point. This means
adjusting this parameter makes the visual interface more effi-
cient and less jarring. Also, for small updates, it can allow for
some caching in recomputing various quantities. In contrast,
for a coreset Q1 constructed directly from a Z-order, if the
size parameter is changed slightly, we may recompute a new
coreset Q2 to satisfy this parameter change with no overlap
with Q1. This could cause the visualization to appear unsta-
ble and require that everything is completely recomputed.

For the Z-order approach, we can simply describe this priority
reordering using a bit reversal. Given all of the points sorted by the
Z-order, label each point as a binary number starting from 0 . . .00,
0 . . .01, 0 . . .10, 0 . . .11, Pad the dataset with dummy points so
the total number is a power of 2; i.e., all binary numbers of a fixed
length are included. Then reverse the order of the bits, so 101011
becomes 110101. Next randomize this by taking a random mask
M and XORing the mask with all flipped numbers; basically this
randomly flips half of the bits. Then sort these points by these new
binary numbers. Remove the dummy points, and this is the new
order. This is illustrated in a small example in Table 1.

An alternative way of understanding this approach is to illustrate
it using a binary tree. For the original data P, we give each point
an index i based on the order of the points in the Z-order. Then we
construct a binary tree over these points based on this sorted order.
Next, we fill up the binary tree with dummy points at the end of the
ordering so that the size is a power of 2, and the binary tree is a
perfectly-balanced tree; see Figure 4 for an example with 14 points.

Then we re-order these points by selecting points from the tree in
a random way, so the number of selected points in each subtree is as
balanced as possible; Algorithm 1 provides psuedocode for this pri-
ority re-ordering algorithm. At each step, at each internal node, we
keep track of how many points have been selected from each sub-
tree. If the two subtrees have the same number of selected points,
choose one at random, and recurse. If the two subtrees have imbal-
anced counts of selected points, then recurse on the subtree (which
will be unmarked) that has fewer selected points. This random-
izes the process while ensuring that the selection is as balanced as

Figure 4: Index tree of a dataset of 14 points (blue). Dummy nodes
are shown in red.

possible with respect to the original ordering. The new, priority or-
der of the points S = 〈s1,s2, . . . ,sn〉 is the order in which they are
selected, ignoring dummy points. The purpose of the dummy points
it to make sure that we don’t over-select from the existing points on
the right subtree if they have fewer points than the left subtree.

Algorithm 1 priority reordering
1: i = 1
2: loop
3: node = root
4: while (node is not leaf node and not marked) do
5: if (node→left and node→right are both unmarked)

then
6: generate a random number r from {0,1}
7: if r = 0 then node = node→left and mark node
8: if r = 1 then node = node→right and mark node
9: else if (node→left is marked) then

10: reset node→left as unmarked
11: node = node→right
12: else if (node→right is marked) then
13: reset node→right as unmarked
14: node = node→left
15: else if (both children are marked) then
16: return [all nodes have been processed]
17: if (leaf node and not dummy) then
18: output node as si
19: i = i+1

3.3 Comparing Coresets with Random Sampling

To guarantee ε-error coresets require O((1/ε) log2.5 1
ε
) size, while

random sampling requires O(1/ε2) size. In other words, coresets
with the same error as random sampling can be about a square root
of the size (see Figure 3). We will compare two kind of errors: gen-
eral error and relative error between original data KDE and coreset
KDE as well as original data KDE and random sample KDE. Sup-
pose the original dataset is P, coreset or random sample is defined
as Q, then absolute error is defined as KDEP− KDEQ and relative

Full Data Coreset Random Sample
K

en
tu

ck
y

P
hi

la
de

lp
hi

a
S

yn
th

et
ic

Figure 5: Comparison of ground truth KDE (left), coreset KDE (middle), random sample KDE (right), on three datasets. Regions of high error in
the random sampling are highlighted with red frames across all conditions.

error is defined as KDEP−KDEQ
KDEP

.

3.3.1 Datasets

In our experiments we use two large real datasets and one synthetic
dataset. The first dataset (Kentucky) is of size 199,163 and con-
sists of the longitude and latitude of all highway data points from
OpenStreetMap data in the state of Kentucky. The second dataset
(Philadelphia) contains 683,499 geolocated data points; it consists
of the longitude and latitude of all crime incidents reported in the
city of Philadelphia by the Philadelphia Police Department between
2005 and 2014.

Our Synthetic dataset mimics a construction of Zheng and
Phillips [23] meant to create density features at many different
scales using a recursive approach inside a unit square [0,1]2. The
dataset contains 532,900 data points. At the top level it generates 4
points p1 = (0,0), p2 = (0,1), p3 = (1,0), p4 = (1,1). We recurse
into 9 new rectangles by splitting the x- and y-coordinates into 3
intervals each and taking the cross-product of these intervals. The

intervals are defined non-uniformly, splitting the x-range (and y-
range) into pieces [0,0.5], [0.5,0.8], and [0.8,1.0]. We also add 4
new points at (0.5,0.5), (0.5,0.8), (0.8,0.5), and (0.8,0.8) to the
created dataset. In recursing on the 9 new rectangles we further
split each of these and add points proportional to the length of their
sides.

3.3.2 Visual Demonstration on Data

To demonstrate the advantage of the coreset method over the ran-
dom sampling method, we show the visualizations of KDEs on these
three datasets in Figure 5. In this figure we show the KDE of the
original dataset, the coreset, and a random sample. We set the size
of the coreset in Kentucky to 7,675, in Philadelphia to 7,675, and
in Synthetic to 69,077. A transfer function colors each pixel with
respect to the largest KDE(x) value observed in the full dataset (a
dark red), transitioning to a light blue and then white for values less
than 5% of this value.

The high-level structure for both the coreset and random sample

visualizations are preserved in each case; however, for each dataset
there are many subtle differences where the random sample cap-
tures some area incorrectly. We have highlighted a few of these
differences across the 3 visualizations in red boxes in Figure 5.

Another way to understand the error is by directly plotting the
error values, as we have done in Figure 6 for the same dataset. We
plot both the absolute and relative error. Here the transfer func-
tion is normalized based on the largest difference observed for each
dataset and error measure, but held the same between conditions, to
allow for the direct comparison of coreset error and random sample
error. The resulting color scale is a diverging color map: when the
coreset or random sample has a larger value than the true dataset,
the area is shown in increasingly saturated shades of red; and when
the true dataset has a smaller value, the area is shown in increas-
ingly saturated blue. When they are similar white is shown. We
can visually observe darker colors (and hence more error) for the
random sampling approach than the coreset approach.

Note that the theory specifically guarantees the additive error
should be smaller for coresets, but we plotted the relative error as
well since it seems that such relative differences may have more ef-
fect both in quantitative anomaly detection as well as in an observed
visual artifact. Indeed we observe larger relative error for random
sampling as well.

4 AVOIDING ERROR WHEN THRESHOLDING ISO-LEVELS

A common pattern for interactive data visualization is to show an
overview of all the data and then enable analysts to zoom in to in-
vestigate regions of interest. For geospatial data, nano-cubes is a re-
cent system that delivers such an experience [10] for large datasets.

A critical aspect of such overviews is hence that they faithfully
represent the data in any region above some density of interest, i.e.,
that wherever there is data above a threshold there should be a vis-
ible mark that can be investigated in detail. In fact there is a well-
developed theory around random sampling regarding this property
called and ε-net. It says if we sample O((1/ε) log(1/ε)) points,
then any geometric region (like a circle or rectangle) with more than
ε-fraction of the points (a density value larger than ε) will contain
at least one point [7].

However, this desire to show all possibly interesting features
runs into another problem. If we set the minimum threshold for
coloring pixels as non-white too low, then the visualization ends
up displaying a lot of noise. That is, there may be regions which
should have low (or almost 0) density, which are shown with a visi-
ble mark. In contrast to the other sampling results mentioned above
(which require larger, O(1/ε2)-size, samples), the guarantees for ε-
nets provide no protection against false positives. Moreover, simple
random sampling is used heavily in many big data systems, such as
STORM [5].

To address this problem, we will build on a more recent adaption
of ε-nets specific to kernel density estimates, called (τ,ε)-nets [14].
This coreset Q ⊂ P ensures that for any point x ∈ Rd such that
KDEP(x)≥ ε , there exists a point q ∈Q such that K(x,q)≥ τ . That
is, for any query point x above some density threshold ε , there is
some witness point in the coreset point q ∈ Q that is nearby (its
similarity K(x,q), is at least τ). Although such guarantees can
be derived from the coresets we discussed earlier, this (τ,ε)-net
only requires a random sample of size O(1

ε−τ
log 1

ε−τ
), which for

τ = ε/2 is O(1
ε

log 1
ε
), i.e., it is roughly the same as the previous

and slightly more complex coreset.
So how can we use this idea of a (τ,ε)-net to aid in choosing a

color threshold of our transfer function? One approach is to make
that threshold adaptive. Our proposed method will only color low-
density regions (at some threshold taking the place of τ) if they are
close to some higher density region (defined by another parameter
ε). This means spurious regions far from the main data will not be
illustrated as they are likely noise. But near a high density region

our visualization will draw the lowest density layer. Data near a
high-density regions is less likely to be noise, and so our method
displays this part as accurately as possible.

In detail, we implement this using two values. The first value ε

(= percentage) is the minimum observed value to represent a “high
density region.” The second value r (= radius) is the minimum dis-
tance an interesting point must be to a high-density region. Then if
a pixel x is not within a distance r of some other pixel y such that
KDEQ(y)≥ ε , then it is not drawn, as if there is no appreciable den-
sity there. If KDEQ(x)≥ ε or if x is within distance r of some pixel
y such that KDEQ(y) ≥ ε , then it will be drawn as specified by the
transfer function.

Figure 7 demonstrates this approach on our three datasets. For
each dataset, it shows the kernel density estimate for the full data, a
random sample of that data, and a de-noised version of the random
sample. In the random sample, some anomalous regions appear
due to sampling noise (examples are highlighted with red circles in
Figure 7), which disappear in the de-noised version. The denoised
version is a more accurate representation of the original data as it
does not show various anomalous bumps of density.

5 SYSTEM

To demonstrate our approach and compare it to both, ground truth
and random sampling we build an interactive system to display ker-
nel density estimates of very large spatial data. It enables analysts to
interactively explore such large data while avoiding false positives.
To enable a direct comparison of various approaches, we show two
windows showing the same dataset using different methods—the
KDE of the full dataset, coreset KDE, random sample KDE, core-
set error, coreset relative error, random sampling error and random
sampling relative error. Analysts can specify the error threshold ε ,
based on which the system automatically generates a coreset or a
random sample based on ε .

Zooming and panning is synchronized between views, so that
analysts can navigate and compare the views at various scales and
positions. To provide geospatial context, the KDE visualization is
rendered on top of a customized Google Map widget, which shows
the geographic features as grayscale to avoid interference with the
colors used to display the KDE.

We also provide various color maps options from ColorBrewer
[6]. We allow users dynamically change the choice of color map,
and its scaling within the colorbar (Figure 9).

5.1 Interactive De-noising
When applying the de-noising process that alters the low end of
the color scale with ε,τ-nets, we found that the choice of these
parameters can be difficult for a user to select. To address this,
we designed a feature where an analyst can highlight a region that
appears to be an anomalous region, and the system will suggest the
a pair of minimal percentage and radius values that can be set to
remove the noise in that region. Figure 10 illustrates this process
within our system.

Analysts select an isolated regions to get rid of, then a tips mes-
sage will give the suggestions of “percentage” and “radius”, so τ =
“percentage” × the largest KDE within “radius” of the objective
point. These values can then be applied to the parametrization of
the de-noising process, eliminating the noisy spot and other like it.

We suggest to users to attempt this with a few isolated dots and
see the effects. Then if desired, they can also manually tune these
parameters directly and quickly see the effect.

5.2 Implementation
The front end of our technology demonstration is implemented in
HTML/JavaScript and uses D3 for axis, scales and user interface
elements, Canvas for the rendering of the KDEs and the Google
Maps API for the background maps.

KDEfull− KDEcoreset KDEfull− KDERS
KDEfull−KDEcoreset

KDEfull

KDEfull−KDERS
KDEfull

K
en

tu
ck

y
P

hi
la

de
lp

hi
a

S
yn

th
et

ic

Figure 6: Comparison of the differences between original KDEs and coreset KDEs (first column) and the difference between original KDEs and
random sampling KDEs (second column). The last two columns show the corresponding relative differences.

The backend that generates the coresets is an extension of work
from SIGMOD 2012 [22] and is written in C. This can take any
large spatial dataset as a text file, a error parameter ε , and output
a coreset. We modify this to generate a priority reordering of the
entire dataset so that every initial subset of the data is a coreset,
with error parameter effectively decreasing as the chosen coreset
size increases. This process is also written in C, and generates a
text file sufficient for the HTML/Javascript to use as its input.

The implementation of the visualization system (https:
//github.com/SayingsOlly/kernel_vis_d3) and the
back-end code (http://www.cs.utah.edu/˜yanzheng/
kde/) is available under the BSD 3-clause license. We invite oth-
ers to download and interact with it.

6 DISCUSSION AND LIMITATIONS

We study the specific but ubiquitous visualization tool of kernel
density estimates, with the goal of how best to integrate them into a
large-scale visualization system — specifically those making the in-
creasingly common design choice to approximate massive datasets.
In this context we demonstrate that coresets provide better and more
efficient estimates than simple random sampling. We also develop
a new way to preprocess the coresets so that their size resolution
can be easily updated without redoing expensive computation. Ad-
ditionally, we introduced a new tool for dealing with spatial noise
at low densities — a common nuisance that distracts the user to

explore potential outliers which are not present in the full dataset.
This provides an easy way to “zap” these unfortunate event with a
simple rule that will apply to all similar visual (but not statistical)
anomalies. Our simple system demonstrates the usefulness of all of
these insights through interaction with real and synthetic dataset.

Our interactive visualization system, however, is designed as a
prototype to demonstrate the strengths of the underlying technique
and is not designed to be a fully-fledged geospatial data analysis
system. Several improvements with respect to data loading and us-
ability are conceivable to make the system useful for actual analysis
tasks. We would also like to explore the effects of different coreset
constructions (e.g., [12, 4]) and types of kernels other than Gaus-
sians (e.g., Laplace or Epanechnikov).

With any interactive visualization tool, it is important to be cog-
nizant of the potential for visual p-hacking [20]: where a user
tweaks the visual parameters until he/she finds the interpretation
of the data he/she wants to see, but unwittingly has just discovered
artifacts of the noise in the data. Our technique moderates this by
allowing users to identify noise (perhaps using expert knowledge)
and remove it. Moreover, it enforces the same pruning criteria for
all isolated parts of the dataset, so it is not possible to design prun-
ing criteria separately for different areas — an easy way to overfit.

In general, one should compliment this with a query-and-filter
strategy to verify abnoromal or interesting aspects of the data be-
yond just the visual patterns. Our tool is meant to help users quickly
determine where to take these closer looks.

Full Data Random Sample Random Sample after denoise
K

en
tu

ck
y

P
hi

la
de

lp
hi

a
S

yn
th

et
ic

Figure 7: Visualization of random sample KDEs of all three datasets. Showing all isolevels of a random sample (middle) shows false anomalous
regions, circled, compared to ground truth (left). After zapping process, (right) still preserves the rough shape of the data–enough to know where
to explore more–without any of the false positive regions.

7 CONCLUSION AND FUTURE WORK

We have demonstrated the use of coresets for kernel density esti-
mates, ways to preprocess them for easy parameter updates, and
how to prune a certain type of low-density noise. We believe these
are techniques that should be integrated into many visualization
systems for large spatial datasets.

However, our system itself is only a prototype. We would
like to actually map these ideas into more complex systems (e.g.,
nanocubes [10] or STORM [5]) which already deal with and ap-
proximate various datasets and allow for other richer types of inter-
actions.

We also believe coresets [13, 3] can potentially be a very useful
tool for efficiently visually interacting with many types of massive
datasets. We hope to explore more of these applications in the fu-
ture.

ACKNOWLEDGEMENTS

Thanks to support by NSF CCF-1350888, IIS-1251019, ACI-
1443046, CNS-1514520, CNS-1564287 and NIH U01 CA198935.

REFERENCES

[1] S. Agarwal, B. Mozfari, A. PAnda, H. Milner, S. Madden, and I. Sto-
ica. Blinkdb: Queries with bounded errors and bounded response
times on very large data. In EuroSys, 2013.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-
filling curves and their use in the design of geometric data structures.
Theoretical Computer Science, 181:3–15, 1997.

[3] O. Bachem, M. Lucic, and A. Krause. Practical coreset construction
for machine learning. Technical report, arXiv: 1703.06476, 2017.

[4] Y. Chen, M. Welling, and A. Smola. Supersamples from kernel-
herding. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2010.

Figure 8: A snapshot of the system.

Figure 9: Visualization of KDEs with different colorbars.

[5] R. Christensen, L. Wang, F. Li, K. Yi, J. Tang, and N. Villa. STORM:
Spatio-Temporal Online Reasoning and Management of large spatio-
temporal data. In Proceedings of 34th ACM SIGMOD International
Conference on Management of Data, 2015.

[6] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for
selecting colour schemes for maps. The Cartographic Journal, 40:27–
37, 2003.

[7] D. Haussler and E. Welzl. epsilon-nets and simplex range queries.
Disc. & Comp. Geom., 2:127–151, 1987.

[8] S. Joshi, R. V. Kommaraju, J. M. Phillips, and S. Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. Pro-
ceedings 27th Annual Symposium on Computational Geometry, 2011.

[9] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Ru-
binfeld. Rapid sampling for visualizations with ordering guarantees.
In Proceedings VLDB Endowment, 2015.

[10] L. Lins, C. Scheidegger, and J. Klosowski. Nanocubes for real-time
exploratioin of spatiotemporal datasets. IEEE TVCG, 2013.

[11] Z. Liu, B. Jiang, and J. Heer. inmens: Realt-time visual querying of
big data. In Eurographics Conference on Visualization, 2013.

[12] J. M. Phillips. eps-samples for kernels. Proceedings 24th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2013.

[13] J. M. Phillips. Coresets and sketches. In Handbook of Discrete and
Computational Geometry, chapter 49. CRC Press, 2016.

[14] J. M. Phillips and Y. Zheng. Subsampling in smoothed range spaces.
In Algorithmic Learning Theory, pages 224–238. Springer, 2015.

[15] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley, 1992.

[16] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, 1986.

[17] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions of Visualization and Computer Graphics, 8(1), 2002.

[18] C. Sung, D. Feldman, and D. Rus. Trjacetory clustering for mo-
tion prediction. In IEEE/RSJ International Converence on Intelligent
Robots and Systems, 2012.

(a) KDE of a random sampling and selected zapping area.

(b) Input the selected parameters.

Figure 10: Illustration of the interactive de-noising process. Analysts
select a region in the visualization they suspect to contain an artifact.
The algorithm suggests parameters that can be used to remove that
artifact (a) and applies them to the input fields (b).

[19] Z. Wang, N. Ferreira, Y. Wei, A. Bhaskar, and C. Scheidegger. Gaus-
sian cubes: Real-time modeling for visual exploration of large multi-
dimensional datasets. In IEEE InfoVis, 2016.

[20] H. Wickham, D. Cook, H. Hofman, and A. Buja. Graphical infer-
ence for infovis. IEEE Transactions of Visualization and Computer
Graphics, 16:973–979, 2010.

[21] B. M. Yongjoo Park, Michael Cafarella. Visualization-aware sampling
for very large databases. In IEEE International Conference on Data
Engineering, 2016.

[22] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency in
kernel density estimates for large data. In Proceedings ACM Confer-
ence on the Management of Data (SIGMOD), 2012.

[23] Y. Zheng and J. M. Phillips. L infty error and bandwidth selection
for kernel density estimates of large data. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 1533–1542. ACM, 2015.

