
Quality and Efficiency in Kernel Density Estimates for
Large Data ∗

Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, Feifei Li
School of Computing, University of Utah, Salt Lake City, USA

{yanzheng, jestes, jeffp, lifeifei}@cs.utah.edu

ABSTRACT
Kernel density estimates are important for a broad variety
of applications. Their construction has been well-studied,
but existing techniques are expensive on massive datasets
and/or only provide heuristic approximations without the-
oretical guarantees. We propose randomized and determin-
istic algorithms with quality guarantees which are orders of
magnitude more efficient than previous algorithms. Our al-
gorithms do not require knowledge of the kernel or its band-
width parameter and are easily parallelizable. We demon-
strate how to implement our ideas in a centralized setting
and in MapReduce, although our algorithms are applicable
to any large-scale data processing framework. Extensive ex-
periments on large real datasets demonstrate the quality,
efficiency, and scalability of our techniques.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management –
Systems

Keywords
Kernel density estimate (KDE), distributed and parallel KDE

1. INTRODUCTION
A kernel density estimate is a statistically-sound method

to estimate a continuous distribution from a finite set of
points. This is an increasingly common task in data analy-
sis. In many scientific computing and data intensive appli-
cations, the input data set P is a finite number of observa-
tions or measurements made for some real-world phenom-
ena, that can be best described by some random variable
V with an unknown probability distribution function (pdf)
f . For example, temperature readings from sensor nodes,
collected over a period of time, represent a finite sample of
a 1-dimensional random variable temperature.

Given a data set P consisting of values from a domain M,
a kernel density estimate is a function fP that for any input

∗Thanks to support from NSF grants IIS-0916488, IIS-
1053979, and CCF 1115677.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13,June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

in M (not necessarily in P) describes the density at that lo-
cation. It is a fundamental data smoothing problem where
inferences about the population are made, based on a finite
data sample. That said, we view P as a finite, independent
and identically distributed (iid) data sample drawn from a
random variable V that is governed by an unknown distri-
bution f . We are interested in estimating the shape of this
function f . The kernel density estimate fP approximates the
density of f at any possible input point x ∈ M [31,37]. Fig-
ure 1 visualizes the kernel density estimate (KDE) in both
1 and 2 dimensions, using real data sets (a web trace in 1D
and a spatial dataset from openstreetmap in 2D). Black dots
represent a subset of points from P , and the blue curves or
regions represent the KDE constructed from P .

(a) KDE in 1D. (b) KDE in 2D.

Figure 1: Kernel density estimate (KDE).
A kernel density estimate has useful and important appli-

cations in databases. Suppose we have a set of customers
labeled by their annual income P . Then we may ask do
we have more customers with income about 100K or income
about 50K (rather than specifying a rigid range). A kernel
density estimate is a function fP that for any input (such as
100K or 50K) describes the density at that location. So we
could return the values fP (100K) and fP (50K) to compare.

Alternatively, we may have a database storing the (two-
dimensional) locations of crimes in a database, and we may
want to compare the density of these crimes around two
houses (that we may be considering buying). In this case,
rigid notions of districts may not appropriately capture the
density at houses near the borders of these districts.

Another family of applications originates from statistical
physics where the KDE value is proportional to the force
in a system of particles. In this setting, very high precision
answers are needed to accurately carry out simulations.

Our contributions. A kernel density estimate serves two
main purposes. First, it is a data structure that can process
function evaluation queries. Second, it is a summarization,
like a histogram, for quickly presenting the distribution of
density over a domain. We will allow approximate kernel

density estimate queries; most large data summarizations
are by nature approximations, and density evaluations are
models and thus should not be used to arbitrary precision.
This approximation allows us to focus on a trade-off between
the size of the data structure and the allowed approximation
error; we focus on the strong ℓ∞ error between the original
kernel density estimate and its approximation.

Moreover, unlike histograms, kernel density estimates gen-
eralize naturally to more than one dimensional data. Since
many spatial data sets lie naturally in R

2, we focus primar-
ily on one and two-dimensional data; however our techniques
will scale naturally to higher dimensions; see Section 5.6.

With these goals in mind we investigate how to calculate
such a data structure on an enormous scale (our experiments
use 100 million points); our approximation (with theoretical
bounds) is quite small in size (requires only megabytes in
space) and is in fact independent of the original number of
points, and offers very accurate queries. More importantly,
our methods for computing these approximations are de-
signed with parallel and distributed processing in mind, and
we demonstrate how to adapt them in the popular MapRe-
duce framework. But they can be easily adopted by any
other parallel and distributed computation models.

The paper is organized as follows. Section 2 presents the
problem formulation. Section 3 discusses background mate-
rial and related work and Section 4 discusses the one dimen-
sion case. Section 5 presents the two dimension case. Sec-
tion 6 reports experimental results and Section 7 concludes.
Some technical proofs are relegated to the Appendix.

2. PROBLEM FORMULATION
Let P be an input point set of size n. We will either

consider P ∈ R
1 or P ∈ R

2. We first describe the situation
for R

d, and then specify to one of these two common cases.
We restrict the kernels K : Rd ×R

d → R
+ we consider to

satisfy the following three properties:

(K1) mass preservation: For any p ∈ R
d, then

∫

x∈Rd

K(p, x)dx = 1.

(K2) shift- and rotation-invariance: There exists a
function κ : R+ → R

+ such that for any p, x ∈ R
d we

have K(p, x) = κ(‖p− x‖), where ‖p− x‖ denotes the
ℓ2 distance between p and x.

(K3) monotonicity: For z < z′ then κ(z) > κ(z′).

Examples of kernels include (described here for R2):

• Gaussian: K(p, x) = 1
2πσ2 exp

(

−‖p−x‖2

2σ2

)

• Triangle: K(p, x) = 3
πσ2 max

{

0, 1− ‖p−x‖
σ

}

• Epanechnikov: K(p, x) = 2
πσ2 max

{

0, 1− ‖p−x‖2

σ2

}

• Ball: K(p, x) =

{

1/πσ2 if ‖p− x‖ < σ

0 otherwise.

We use the Gaussian kernel by default (the most widely
used kernel in the literature); although some scenarios favor
the Epanechnikov kernel [39,42]. All kernel definitions have
a σ term to controls the amount of data smoothing. In
this paper we assume that σ is fixed; however, choosing the
appropriate σ is an important problem and there is a large
literature on doing so [23,35,44]. A notable property of our
main techniques is that they do not require knowledge of the

kernel type or the value of σ, it is only used in the evaluation
step (although bounds are worse with the Ball kernel; details
will appear in the extended version of this paper).

Given such a kernel K and a point set P in d-dimensions
a kernel density estimate is formally defined as a function
kdeP which for any query x ∈ R

d evaluates as

kdeP (x) =
1

|P |
∑

p∈P

K(p, x). (1)

However, in many data-intensive applications, P could be
large, e.g., sensor readings from numerous sensors over a
long period of time. Thus, evaluating a kernel density esti-
mate over P directly, which takes O(n), can be prohibitively
expensive in big data. Hence, our goal is to construct an-
other point set Q (often Q ⊂ P , but not necessarily) so that
kdeQ approximates kdeP well. More precisely,

Definition 1 (Approximate Kernel Density Esimate)
Given the input P , σ, and some error parameter ε > 0, the
goal is to produce a set Q to ensure

max
x∈Rd

|kdeP (x)− kdeQ(x)| = ‖kdeP − kdeQ‖∞ ≤ ε, (2)

and we call this an ε-approximation.
We can also allow some failure probability, in which case

an additional parameter δ ∈ (0, 1) is introduced, and the
goal is to produce Q to ensure

Pr[‖kdeP − kdeQ‖∞ ≤ ε] ≥ 1− δ, (3)

and we call this an (ε, δ)-approximation.
Lastly, in some kernel density estimates, Q does not have

to be a point set. Rather, it can be any succinct structure
that approximates kdeP (x) well according to (2) or (3).

Our objective is to find an approximate kdeQ such that
for any query x, evaluating kdeQ(x) is much cheaper than
evaluating kdeP (x) which takes O(n), and at the same time,
kdeQ(x) approximates kdeP (x) well even in the worst case.

Often it will be useful to instead generate a weighted point
set Q so there exists a weight w : Q → R associated with ev-
ery point in Q and in which case the kernel density estimate
over Q is defined as:

kdeQ(x) =
∑

q∈Q

w(q)K(q, x). (4)

3. BACKGROUND AND RELATED WORK
Around the 1980s kernel density estimates became the de-

facto way in statistics to represent a continuous distribution
from a discrete point set [42] with the study initiated much
earlier [37]. However, this work often implied brute force
(O(n) time) solutions to most queries.

The problem of evaluating kernel density estimates is a
central problem in statistical physics and numerical anal-
ysis. These problems are often posed as n-body simula-
tions where the force-interactions between all pairs of points
need to be calculated [1], and the pairwise force is up to
a constant described by the Gaussian kernel. This has re-
sulted in many indexing type techniques that up to con-
stant precisions can evaluate the kernel density estimate at
all n points in roughly O(n) time. These techniques are
sometimes called fast multi-pole methods [4], and in practice
these are typically implemented as quad trees which calcu-
late the distance to roots of subtrees instead of all pairs

when the distance becomes far enough. Numerical approxi-
mation techniques called the (Improved) Fast Gauss Trans-
form (IFGT) [14, 36, 49, 50] can further improve these ap-
proaches. But the IFGT approach (in general fast multipole
methods) is based on heuristics and does not offer formal
theoretical guarantees on the approximation-time trade-off.

In order to have a formal theoretical guarantee to de-
rive an (ε, δ)-approximation, random sampling is a baseline
method, but it requires O(1

ε2
log 1

δ
) samples to be included

in Q, which could lead to expensive query evaluations espe-
cially for small ε and/or δ values.

A recent technique using discrepancy theory [33] creates
a small representation of a kernel density estimate (smaller
than the random sampling approach) while still bounding
the ℓ∞ error. It works by creating a min-cost matching
of points in P ; that is P is decomposed into |P |/2 pairs
so that the sum over all distances between paired points is
minimized. Then it randomly removes one point from each
pair reducing the size of P by half. This process is repeated
until either the desired size subset or the tolerable error level
is reached. However, computing the min-cost matching [11]
is expensive, so this approach is only of theoretical interest
and not directly feasible for large data. Yet, this will serve
as the basis for a family of our proposed algorithms.

A powerful type of kernel is a reproducing kernel [2, 32]
(an example is the Gaussian kernel) which has the prop-
erty that K(p, q) = 〈p, q〉HK

; that is, the similarity be-
tween objects p and q defines an inner-product in a re-
producing kernel Hilbert space (RKHS) HK . This inner-
product structure (the so-called “kernel trick”), has led to
many powerful techniques in machine learning, see [38, 40]
and references therein. Most of these techniques are not
specifically interested in the kernel density estimate; how-
ever, the RKHS offers the property that a single element
of this space essentially represents the entire kernel density
estimate. These RKHS approximations are typically con-
structed through some form of random sampling [41,48], but
one technique known as “kernel herding” [7] uses a greedy
approach and requires significantly smaller size in theory,
however it bounds only ℓ2 error as opposed to the sampling
techniques which bound a stronger ℓ∞ error [24].

Kernel density estimates have been used in the database
and data mining community for density and selectivity esti-
mations, e.g., [17,51]. But the focus in these works is how to
use kernel density estimates for approximating range queries
and performing selectivity estimation, rather than comput-
ing approximate kernel density estimates for fast evalua-
tions. When the end-objective is to use a kernel density esti-
mate to do density or selectivity estimation, one may also use
histograms [16, 22, 26, 34] or range queries [12, 13, 19, 20, 47]
to achieve similar goals, but these do not have the same
smoothness and statistical properties of kernel density esti-
mates [42]. Nevertheless, the focus of this work is on com-
puting approximate kernel density estimates that enable fast
query evaluations, rather than exploring how to use kernel
density estimates in different application scenarios (which is
a well-explored topic in the literature).

4. WARM-UP: ONE DIMENSION
Efficient construction of approximate kernel density es-

timates in one-dimension is fairly straightforward. But it
is still worth investigating these procedures in more detail
since to our knowledge, this has not been done at truly large

scale before, and the techniques developed will be useful in
understanding the higher dimensional version.

Baseline method: random sampling (RS). A baseline
method for constructing an approximate kernel density esti-
mate in one dimension is random sampling. It is well known
that [7, 33] if we let Q be a random sample from P of size
O((1/ε2) log(1/δ)) then with probability at least 1 − δ the
random sample Q ensures that ‖kdeP − kdeQ‖∞ ≤ ε.

That said, the first technique (RS) follows from this obser-
vation directly and just randomly samples O((1/ε2) log(1/δ))
points from P to construct a set Q. In the centralized set-
ting, we can employ the one pass reservoir sampling tech-
nique [46] to implement RS efficiently. For large data that is
stored in distributed nodes, RS can still be implemented ef-
ficiently using the recent results on generating random sam-
ples from distributed streams [9].

The construction cost is O(n). The approximate kde has
a size O((1/ε2) log(1/δ)), and its query cost (to evaluate
kdeQ(x) for any input x) is O((1/ε2) log(1/δ)).

RS can be used as a preprocessing step for any other tech-
nique, i.e., for any technique that constructs a kde over P ,
we run that technique over a random sample from P in-
stead. This may be especially efficient at extremely large
scale (where n ≫ 1/ε2) and where sampling can be done
in an efficient manner. This may require that we initially
sample a larger set Q than the final output to meet the
approximation quality required by other techniques.

Grouping selection (GS). A limitation in RS is that it
requires a large sample size (sometimes the entire set) in
order to guarantee a desired level of accuracy. As a result,
its size and query cost becomes expensive for small ε and δ.

Hence, we introduce another method, called the grouping
selection (GS) method. It leverages the following lemma,
known as the γ-perturbation.

Lemma 1 Consider n arbitrary values {γ1, γ2, . . . , γn} such
that ‖γi‖ ≤ γ for each i ∈ [n]. Then let Q = {q1, q2, . . . , qn}
such that qi = pi + γi for all pi ∈ P . Then ‖kdeP −
kdeQ‖∞ ≤ γ/σ.

Proof. This follows directly from the (1/σ)-Lipschitz con-
dition on kernelK (which states that the maximum gradient
of K is (1/σ)), hence perturbing all points by at most γ af-
fects the average by at most γ/σ.

Using Lemma 1, we can select one point q in every segment
ℓ of length εσ from P and assign a weight to q that is pro-
portional to the number of points from P in ℓ, to construct
an ε-approximate kde of P . Specifically, GS is implemented
as follows. After sorting P if it is not already sorted, we
sweep points from smallest to largest. When we encounter
pi, we scan until we reach the first pj such that pi+εσ < pj .
Then we put pi (or the centroid of pi through pj−1) in Q
with weight w(pi) = (j − i)/n. Since Q constructed by GS

is weighted, the evaluation of kdeQ(x) should follow the
weighted query evaluation as specified in equation 4.

Theorem 1 The method GS gives an ε-approximate kernel
density estimate of P .

Proof. The weighted output of GS Q corresponds to a
point set Q′ that has w(q) unweighted points at the same
location of each q ∈ Q; then kdeQ = kdeQ′ . We claim that
Q′ is an εσ-perturbation of P , which implies the theorem.

To see this claim, we consider any set {pi, pi+1, . . . , pj−1}
of points that are grouped to a single point q ∈ Q. Since

all of these points are within an interval of length at most
εσ, each pi+ℓ is perturbed to a distinct point q′i+ℓ ∈ Q (at
location q) that is at distance γi+ℓ ≤ εσ.

GS’s construction cost is O(n) if P is sorted, or O(n log n)
otherwise. Its query cost is O(|Q|), which in the worst case
could be |Q| = |P |. And Q may be large depending on how
densely points in P are co-located and the values of ε and σ.
However, GS can be used as a post-processing step on top of
any other method, such as using GS over the output of RS.
This takes little overhead if the points are already sorted,
such as in the output of SS (see below).

Sort-selection (SS). Our best method (SS) offers an ε-
approximate kernel density estimate using only O(1

ε
) sam-

ples in one-dimension, a significant improvement over ran-
dom sampling. It leverages the following interesting result:

Lemma 2 Consider a one dimensional sorted point set P =
{p1, p2, . . . , pn} where pi ≤ pi+1 for all i. Let Pj = {pi ∈
P | (j − 1)εn < i ≤ jεn} for integer j ∈ [1, ⌈1/ε⌉] such that
P = ∪Pj . Then for any Q = {q1, q2, . . . , q⌈1/ε⌉} such that
each qj ∈ Pj then ‖kdeP − kdeQ‖∞ ≤ 2ε.

If each qj = p⌈(j−1/2)εn⌉, then ‖kdeP − kdeQ‖∞ ≤ ε.

We now can construct the SS method based on Lemma
2. It simply selects p⌈(j− 1

2
)εn⌉ from P into Q for each

j ∈ [1, ⌈1/ε⌉]. This requires that P is sorted, and this can
be done efficiently at very large scale using external merge
sort. However, we can do better. Note that ε-approximate
quantiles for ⌈1/ε⌉ quantile values are sufficient to construct
Q, and we can use an efficient streaming or distributed algo-
rithm for computing these ε-approximate quantiles [8,15,21,
27,28]. In particular, we only need to find the εn

2
th, 3εn

2
th,

5εn
2
th, . . . , (n − εn

2
)th quantile values from P . And it is

easy to verify that ε-approximations of these quantiles are
sufficient to establish the 2ε result in Lemma 2.

Using the ε-approximate quantiles, SS has a construc-
tion cost of O(n log 1

ε
); otherwise its construction cost is

O(n log n). In either case, its size is only O(1
ε
) and its query

cost is also just O(1
ε
).

4.1 Efficient Evaluation
Once we have obtained a set Q above so kdeQ approxi-

mates kdeP , we need to efficiently answer queries of kdeQ(x)
for any x ∈ R. The first obvious choice is a brute force com-
putation (BF) where we directly calculate 1

|Q|

∑

q∈Q K(q, x).

This has little overhead and its cost is obviously O(|Q|). It
is most efficient if |Q| is particular small.

A second approach (MP) is to use the one-dimensional
variant of multi-pole methods. We build a B-tree (or binary
tree if Q fits in memory) on Q. Each node v will store
the weight (or count) wv of all nodes in the subtree and
the smallest vs and largest vl coordinates of the subtree.
We traverse the tree as follows, starting at the root. If x ∈
[ws, wl] visit each child and return their sum to the parent. If
|K(vs, x)−K(vl, x)| ≤ ε, then return wvK((vl−vs)/2, x) to
the parent. Else, visit each child and return their sum to the
parent. This approach may improve the query evaluation
time in practice, especially when |Q| is large.

5. TWO DIMENSIONS
In R

2 we first describe baseline methods from the liter-
ature or based on simple extensions to existing methods.

We then introduce our new methods. The first uses a ran-
domized technique based on matchings, and the second is
deterministic and based on space-filling curves.

5.1 Baseline Methods
Random sampling (RS). The first baseline (labeled RS) is
to simply random sample a set Q from P . The same bound
of O((1/ε2) log(1/δ)) on the sample size from one dimension
still holds in 2-dimensions, although the constant in the big-
Oh is likely larger by a factor of about 2.

Improved fast Gauss transform (IFGT).A class of meth-
ods is based on fast multi-pole methods [4]. In practice in
2-dimensions these are implemented as quad trees which cal-
culate the distance to roots of subtrees instead of all pairs
when the distance becomes far enough. The Improved Fast
Gauss Transform (IFGT) [14,36,49,50], is the state-of-the-art
for fast construction and evaluation of approximate kernel
density estimates (although only with Gaussian kernels). It
improves multi-pole approaches by first building a k-center
clustering over the data set P , and then just retaining a
Hermite expansion of the kernel density estimates for the
points associated with each k-centers. But the IFGT method
is based on heuristics and does not offer any formal theoret-
ical guarantees on the approximation-size trade-off. As a
result, it involves a number of parameters that cannot be
easily and intuitively set in order to derive a desired level of
efficiency and accuracy tradeoffs.

Kernel herding (KH). Yet another possible approach is
to explore the reproducing kernel Hilbert space (RKHS).
As discussed in Section 3, these RKHS approximations are
typically constructed through some form of random sam-
pling [41,48], but one technique known as“kernel herding”[7]
uses a greedy approach and requires significantly smaller size
in theory, however it bounds only ℓ2 error as opposed to the
sampling techniques which bound a stronger ℓ∞ error.

In particular, the state-of-the-art kernel herding technique
from [7] is a greedy method. It adds at each step the single
point p ∈ P \Q to Q which most decreases ‖kdeQ−kdeP ‖2.
This is possible to calculate efficiently through an approxi-
mate representation of kdeQ and kdeP in the RKHS. How-
ever, this still takes O(|Q|n) time to construct |Q| since at
each step each point in P \ Q needs to be evaluated to de-
termine how much it will decrease the ℓ2 error.

5.2 Randomized MergeReduce Algorithm
An interesting theoretical result built on discrepancy [5,

30] theory was recently proposed in [33] for constructing a
small set Q so kdeQ approximates kdeP . It extends a classic
method for creating ε-approximations of Chazelle and Ma-
tousek [6] (see also [5, 30]), to ε-approximate kernel density
estimates. These results are mostly of theoretical interest,
the straightforward adaption is highly inefficient. Next we
explain and overcome these inefficiencies.

5.2.1 The MergeReduce framework
Our algorithm leverages the framework of Chazelle and

Matousek [6] and its generalizations. We first describe our
overall framework, and then elaborate the most critical re-
duce step in further details. Roughly speaking, our algo-
rithm repeatedly runs a merge-then-reduce step. Hence, we
denote this framework as the MergeReduce algorithm.

Suppose the desired size of the compressed set Q is |Q| =
k. The framework proceeds in three phases: an initialization

phase, the combination phase, and the optional clean-up
phase. The first phase is implicit, and the last phase is of
theoretical interest only.

In the initialization phase we arbitrarily decompose P into
disjoint sets of size k; call these P1, P2, . . . , Pn/k. Since this
is arbitrary, we can group data that is stored together into
the same partition. This works well for distributed data
or streaming data where consecutively encountered data are
put in the same partition.

The combination phase proceeds in log(n/k) rounds. In
each round, of the remaining sets of size k, it arbitrarily
pairs them together, which we dub the merge step. For each
pair say Pi and Pj , it runs a reduce step on the union of
2k points to create a single set of size k. At a high level,
the reduce step has two parts. The first part is what we
call a matching operation. It produces k pairs of points in
a certain fashion over the 2k input points. The second part
is trivial: it randomly selects one point from each pair to
produce the final output of size k. The merging operation is
the most critical part in a reduce step, and we will elaborate
after presenting the overall MergeReduce framework.

That said, after i rounds of merge and reduce, there are
(n/k)/2i sets of size k. This continues until there is one set
remaining. Note that again the fact that we can pair sets (Pi

and Pj) arbitrarily in a merge step is extremely convenient
in a distributed or streaming setting.

The clean-up phase is not needed if the combination phase
is run as above; see Section 5.2.4 for remaining details.

Importantly, we also note that this entire MergeReduce
framework can be preceded by randomly sampling O(1/ε2)
points from P which are then treated as the input. Then
only log(1/ε) merge-reduce rounds will be needed.

The min-cost matching. The key part of this framework
is to construct a matching in a set of points P . Suppose
|P | = n, a matching consists of n

2
pairs of points, and every

point in P belongs to exactly one pair in a matching.
The recent result from [33] implies that one can use the

min-cost matching to derive an ε-approximate kernel density
estimate. Note that a min-cost matching is a matching so
that the sum of distances between matched points is min-
imized. Unfortunately, by using a min-cost matching, the
algorithm in [33] is impractical. Here is why.

It is well known that a min-cost matching over n points
can be done in O(n3) time using Edmonds’ Blossom algo-
rithm [11]. This quite complicated algorithm involves non-
regular recursion, and it is clearly not scalable for large data
sets. We use the state-of-the-art implementation [25] as a
baseline for the matching operation and label it as Blossom-

MR (MergeReduce with Blossom min-cost matching). This
implementation of the Blossom algorithm requires first cal-
culating K(p, p′) for all O(n2) pairs p, p′ ∈ P as input, which
is part of the overall cost (which is O(n3)).

There have been theoretical improvements [45] to Ed-
monds’ algorithm for points in R

2. These algorithms are
considerably more complicated than that of Edmonds and
no known efficient implementation exists; most likely the
improvements are theoretical in nature only.

We have the following results concerning the Blossom-MR

algorithm, and the Blossom-MR+RS algorithm that first ran-
domly samples O(1/ε2) points.

Theorem 2 For a point set P ⊂ R
2 with n points, we can

construct Q giving an ε-approximate KDE (with constant
probability) in

• O(n
ε2

log2 n log 1
ε
) time and |Q| = O(1

ε
log n

√

log 1
ε
)

using Blossom-MR, and

• O(n + 1
ε4

log3 1
ε
) time and |Q| = O(1

ε
log1.5 1

ε
) using

Blossom-MR+RS.

Lastly, the following greedy algorithm provides a two-
approximation to the cost of the min-cost matching [10].
It finds the closest pair of points in P , matches them, re-
moves them from P , and repeats. This algorithm can be
implemented in O(n2 log n) time as follows. Calculate all
O(n2) pairwise distances and place them in a priority queue.
Repeatedly remove the smallest pair from the queue (in
O(log n) time). If both points are still in P , match them and
mark them as no longer in P . We refer to the merge-reduce
framework with this matching algorithm as the Greedy-MR

method. Greedy-MR does improve the running time over
Blossom-MR, however, it is still quite expensive and not
scalable for large data. Furthermore, the result produced
by Greedy-MR is not known to provide any approximation
guarantees on the kernel density estimate.

5.2.2 More Efficient Reduce Step
The Blossom-MR algorithm and its heuristic variant Greedy-

MR are too expensive to be useful for large data. Thus, we
design a much more efficient matching operation, while still
ensuring an ε-approximate kernel density estimate.

For any matching M , we produce an edge map EM of that
matching M as EM = {e(p, q) | (p, q) ∈ M} where e(p, q) is
an undirected edge connecting p and q. Given a disk B, for
e(p, q) ∈ EM define e(p, q) ∩ B as follows.

• If both p and q are not covered by B, e(p, q) ∩B = ∅.
• If both p and q are covered by B, e(p, q)∩B = e(p, q).

• If either p or q is covered by B but not both. Suppose
p is covered by B, and e(p, q) intersects the boundary
of B at a point s, e(p, q) ∩B = e(p, s).

Then, we define EM ∩B as:

EM ∩ B = {e(p, q) ∩ B | e(p, q) ∈ Em}. (5)

Figure 2: Intersection between a matching and a
disk, solid red lines are included in EM ∩ B. Left
shows Grid matching and right shows Z-order with
every other edge in a matching.

An example of EM ∩B is shown in Figure 2. Essentially,
we only want it to consider edges with at least one endpoint
within B, and only the subset of the edge that is within
B. We observe that in order to produce an ε-approximate
kernel density estimate, the property the matching requires
is in regards to any unit disk B. Specifically, we want

CM,B =
∑

e(p,q)∈EM∩B

‖p− q‖2 (6)

to be small. Let CM = maxB CM,B .
The result in [33] says if M is the min-cost matching (min-

imizes
∑

(p,q)∈M ‖p− q‖), then CM = O(1). But calculating
the min-cost matching, both exactly and approximately, is
expensive as we have shown in Section 5.2.1.

The grid matching. Here we present a novel solution
which does have a bound on CM and is efficient, includ-
ing at very large scales. We progress in rounds until all
points are matched. Starting with i = 0, in round i we con-
sider a grid Gi on R

2 where each grid cell has edge length
lε,i =

√
2σε2i−2. Define cell gr,c ∈ Gi as [rlε,i, (r + 1)lε,i]×

[clε,i, (c + 1)lε,i] for integers r, c. Inside of each cell, match
points arbitrarily. Only the unmatched points (one from
any cell with an odd number of points) survive to the next
round. Each cell in Gi+1 is the union of 4 cells from Gi, thus
in rounds i > 0 it can have at most 4 points. We refer to this
matching algorithm as Grid; see example in Figure 2. For
simpler analysis, we assume σ > εc for some constant c ≥ 1;
typically σ ≫ ε and ε < 1, so this assumption is very mild.
Alternatively, if we do not know σ ahead of time, we can
recursively divide points that fall in the same grid cell into
smaller and smaller levels until at most two are left in each
cell (like a quad tree), and then move back up the recursion
stack only with unmatched points; a careful implementation
can be done in O(n log n) time [18]. Let P0 be unmatched
points after round 0, let P ′ = P \P0, and Q the final output.

Lemma 3 Let M ′(P ′) be the matching on P ′ in Grid. For

each edge (p, q) ∈ M ′(P ′) let P̂ be where (w.l.o.g.) q is

moved to location p. Then P̂ is a εσ/2-perturbation of P ′.

Proof. Since all points matched in round 0 are in a grid
cell of size at most εσ

√
2/4, the point q in any edge is moved

at most
√
2 · εσ

√
2/4 = εσ/2.

Lemma 4 Let M0(P0) be the matching by Grid on P0. Then
CM0

= O(log(1/ε)) and Grid runs in O(n log 1
ε
) time.

Proof. In each round, there are at most 2 matched pairs
per grid cell. Each such pair has edge length at most

√
2lε,i =

σε2i−1, and there are at most (1/σε2i−5/2)2 grid cells that
intersect any unit ball. Thus the total squared-length of all
matchings in round i is at most ((1/σε2i−5/2)2 · (σε2i−1)2 =
2
√
2. After log(1/σε) + 1 rounds the total length of all

matchings is at most 2
√
2(log(1/σε) + 1), and in any ball,

there are at most 4 remaining unmatched points. The last
4 points can each account for at most a squared-length of 4
within a unit ball B, so the total weight of edges in any unit
ball B is at most CM ≤ 2

√
2 log(1/σε) + 19 = O(log(1/ε)).

Each round takes O(n) time, and we can match points ar-
bitrarily in O(n) time after the log(1/σε) + 1 rounds.

We observe in most common scenarios CM is close to 1.
With the Grid matching algorithm, we can instantiate the

MergeReduce framework to get a Grid-MR algorithm, or if
we first sample a Grid-MR+RS algorithm.

Theorem 3 For a point set P ⊂ R
2 with n points, we can

construct Q giving an ε-approximate KDE (with constant
probability) in

• O(n log 1
ε
) time and |Q| = O(1

ε
log n log1.5 1

ε
) using

Grid-MR, and

• O(n + 1
ε2

log 1
ε
) time and |Q| = O(1

ε
log2.5 1

ε
) using

Grid-MR+RS.

Since Grid takes only O(n log 1
ε
) time, the benefit of the

initialization phase to split the data set into n/k pieces does
not out-weigh its overhead in a centralized setting. In par-
ticular, we just run Grid once on all ni points remaining in
round i. This does not affect the runtime or error bounds.

Compared to the Blossom-MR and Greedy-MR algorithms,
Grid-MR produces an ε-approximate kernel density estimate
with about the same size, but with much cheaper construc-
tion cost. Grid-MR’s running time only linearly depends on
n, making it an ideal candidate to scale out to massive data.

5.2.3 Streaming and Distributed MergeReduce
Since the reduce step (the key computational component

of the MergeReduce framework) is only run on select subsets,
this allows the full framework to generalize to distributed
and streaming settings.

Streaming variant. The streaming algorithm follows tech-
niques for approximate range counting [3, 43]. Consecutive
points are assigned to the same partitions Pi, and we pair
and reduce partitions whenever there are two that repre-
sent the same number of points (one that has been merged
i times represents k2i points). This means we only need
to keep log n

k
partitions, and thus only O(k log n

k
) points in

memory at any given time. The dependence on n can be
completely removed by first randomly sampling.

The final structure of the streaming algorithm has weighted
points, where if a point is in a partition that has been re-
duced i times, its weight is 2i. These weights can be removed

to create just 5|Q| points instead of |Q| log |P |
|Q|

by running

the in memory matching algorithm on weighted points [29].
In particular, we can modify a matching algorithm to

work with weighted points, specifically consider the Grid al-
gorithm. In the 0th phase of Grid, a point with weight 2i

represents 2i points that all fall in the same cell, and can be
matched with themselves (this can be done by ignoring this
point until the ith phase when its weight is 1).

Distributed variant. This framework is efficient on dis-
tributed data. Use the streaming algorithm on each dis-
tributed chunk of data, and then pass the entire output of
the streaming algorithm to a central node, which can merge
and reduce the union. The error caused by reducing on the
central node is already accounted for in the analysis. Again,
the dependence on |P | can be removed by first sampling.

5.2.4 Other Extension
An alternative version of the combination phase is possible

for the MergeReduce algorithm. Specifically, it considers
some reduce step that takes time O(nβ) on a set of size n,
and instead sets k = 4(β + 2)|Q| (where |Q| is the desired
size of the final output), and on every (β+3)th round, pairs
sets but does not reduce them. Then the clean-up phase is
used to reduce the single remaining set repeatedly until it is
of size |Q|. When β is a constant, this saves a O(log n) from
the size of the output Q (or O(log 1

ε
) if we sampled first) [6].

More specifically, the output of this MergeReduce variant
is then a set of size |Q| = O(CM

1
ε
log0.5 1

ε
) for a reduce step

that uses a matching algorithm which produces an output
with cost CM . If we use Grid, then Grid-MR produces an
output of size |Q| = O(1

ε
log1.5 1

ε
). And Blossom-MR outputs

Q of size |Q| = O(1
ε
log0.5 1

ε
) in O(n

ε2
log 1

ε
) time.

But in practice, this variant is more complicated to imple-
ment and usually the overhead out-weighs its benefit. Hence
we do not use this variant in this paper.

5.3 Deterministic Z-Order Selection
Inspired by one-dimensional sort-section (SS) and ran-

domized two-dimensional Grid-MR algorithm, we propose a
new deterministic two-dimensional technique based on space
filling curves. A space filling curve puts a single order on
two- (or higher-) dimensional points that preserves spatial
locality. They have great uses in databases for approxi-
mate high-dimensional nearest-neighbor queries and range
queries. The single order can be used for a (one-dimensional)
B+ tree, which provides extremely efficient queries even on
massive datasets that do not fit in memory.

In particular, the Z-order curve is a specific type of space
filling curve that can be interpreted as implicitly ordering
points based on the traversal order of a quad tree. That
is if all of the points are in [0, 1]2, then the top level of the
quad tree has 4 children over the domains c1 = [0, 1

2
]× [0, 1

2
],

c2 = [1
2
, 1]× [0, 1

2
], c3 = [0, 1

2
]× [1

2
, 1], and c4 = [1

2
, 1]× [1

2
, 1].

And each child’s four children itself divide symmetrically as
such. Then the Z-order curve visits all points in the child
c1, then all points in c2, then all points in c3, and all points
in c4 (in the shape of a backwards ‘Z’); and all points within
each child are also visited in such a Z-shaped order. See an
example in Figure 2. Thus given a domain containing all
points, this defines a complete order on them, and the order
preserves spatial locality as well as a quad tree does.

The levels of the Z-order curve (and associated quad tree)
are reminiscent of the grids used in the matching technique
Grid. This insight leads to the following algorithm.

Compute the Z-order of all points, and of every two points
of rank 2i and 2i + 1, discard one at random; repeat this
discarding of half the points until the remaining set is suf-
ficiently small. This approach tends to match points in the
same grid cell, as with Grid, but is also algorithmically waste-
ful since the Z-order does not change between rounds.

Thus we can improve the algorithm by using insights from
SS. In particular, we just run SS on the Z-order of points. So
to collect k = |Q| points, let the ith point retained qi ∈ Q be

the point in rank order ⌈(i− 1
2
) |P |

k
⌉. This selects one point

from each set of |P |
k

points in the Z-order.

In fact, by setting k = O(1
ε
log n log1.5 1

ε
), if we randomly

select one point from each Z-order rank range [(i−1) |P |
k
, i |P |

k
]

(call this algorithm Zrandom), then the resulting set Q has
about the same guarantees as the Grid-MR algorithm, includ-
ing Zrandom+RS which preprocesses by random sampling.

Theorem 4 For a point set P ⊂ R
2 with n points, we can

construct Q giving an ε-approximate KDE (with constant
probability) in

• O(n log n) time and |Q| = O(1
ε
log n log1.5 1

ε
) using

Zrandom, and
• O(n + 1

ε2
log 1

ε
) time and |Q| = O(1

ε
log2.5 1

ε
) using

Zrandom+RS.

Proof. We prove this result by imagining that Zrandom
does something more complicated than it actually does in
order to relate it to Grid-MR. That is, we pretend that in-
stead of just selecting a single points at random from each
range [(i− 1)|P |/|Q|, i|P |/|Q|] in the Z-order rank, we pro-
ceed in a series of log(|P |/|Q|) rounds, and in each round the
set P is reduced in size by half. Specifically, in each round,
out of every two consecutive points in the Z-order (rank 2i
and 2i + 1) we retain one at random. Since the Z-order is
consistent across rounds, this results in a random point in
the rank interval [(i− 1)|P |/|Q|, i|P |/|Q|] as desired.

Now if we consider the levels of the implicit quad tree
defining the Z-order, this is equivalent to the grid used in
Grid-MR. In each round, there are at most 3 edges within
grid cell at level j, but that are not entirely in levels smaller
than j. Since we still only care about O(log(1/ε)) levels of
the grid, the squared distance of these edges in that cell level
account for at most O(1) inside a unit square. Thus CM is
still at most O(log(1/ε)). The remainder of the proof is the
same as in Theorem 3.

However, we find the implementation of the following de-
terministic algorithm to be more effective; but as the ran-
domness is necessary for the proof, we do not provide bounds.

The construction of the Z-order can be done efficiently
using its interpretation as bit-interleaving. Specifically, the
z-value of a point is calculated by interleaving bits from the
most significant bit to the least significant bit in the bi-
nary representation of a point’s coordinates. For example,
a two-dimensional point (3, 5) expressed in its binary repre-
sentation is (011, 101). Its z-value is then (011011)2 = 27.

Then we do not need to completely sort all points by z-
value in order to select the proper k points, we can just
approximately do this so that we have one point selected

from each set of |P |
k

points in the sorted order. This can
be done using an ε-approximate quantiles algorithm that is
accurate up to ε = 1/k. This guarantees the existence in
the quantile structure and its identification of at least one

point within every consecutive set of |P |
k

points. We can just

return this point for each range [(i − 1) |P |
k
, i |P |

k
] of ranks.

We refer to this method as Zorder. Note that, following the
discussion for SS in Section 4, we can use any of the existing
efficient, large-scale ε-approximate quantiles algorithms in
either the centralized or the distributed setting.

5.4 Efficient Query Evaluation
We can do efficient evaluations in R

2 similar to BF and
MP in R

1, as discussed in Section 4.1. In fact, BF is exactly
the same. MP uses a quad tree instead of a binary tree. It
stores a bounding box at each node instead of an interval,
but uses the same test to see if the difference between K(x, ·)
is within ε on the furthest and closest point in the bounding
box to decide if it needs to recur.

5.5 Parallel and Distributed Implementation
As with one-dimensional methods, our two-dimensional

methods can be efficiently implemented in distributed and
streaming settings. Any algorithm using the MergeReduce
framework can run in distributed and parallel fashion. As
a result, Grid-MR, Zrandom, and Zorder are very efficient in
any distributed and parallel environments, and they extend
especially well for the popular MapReduce framework where
data in each split is processed in a streaming fashion.

Among the baseline methods, RS can easily be imple-
mented in any distributed and parallel environments. It
takes some effort to make IFGT run in distributed and par-
allel fashion, but it is possible; we omit the details. Lastly,
the KH can be approximated (without any bounds) by run-
ning its greedy step in each local piece of data independently,
and then merging the results from local nodes.

5.6 Higher Dimensions
All two-dimensional algorithms described can be extended

to higher dimensions. In particular, KH, RS, Blossom-MR,

Greedy-MR extend with no change, while Grid-MR and Zorder-

MR extend in the obvious way of using a d-dimension grid or
space-filling curve. In R

d the theoretical size bounds for RS
increases to O(1

ε2
(d+log 1

δ
)) [24]; Grid-MR, and Zrandom-MR

increases to O(dd/2/ε2−
4

d+2 log1+
d

d+2 1
ε
log n) (and a log 1

ε
factor less for Blossom-MR). The increase in the second set
is due to only being able to bound

Cd
M = max

B

∑

e(p,q)∈EM∩B

‖p− q‖d

instead of equation (6) since the number of grid cells in-
tersected by a unit ball now grows exponentially in d, and
thus we need to balance that growth with the dth power of
the edge lengths. The stated bounds, then results from [33]
with an extra log n factor (which can be turned into a log 1

ε
by first random sampling) because we do not use the im-
practical process described in Section 5.2.4. In no case does
the MergeReduce framework need to be altered, and so the
construction times only increase by a factor d.

6. EXPERIMENTS
We test all methods in both the single-thread, centralized

environment and the distributed and parallel setting. In the
centralized case, we implemented all methods in C++ and
obtained the latest implementation of the IFGTmethod from
the authors in [36,49,50]. We then used MapReduce as the
distributed and parallel programming framework. In partic-
ular, we implemented and tested all methods in a Hadoop
cluster with 17 machines. The centralized experiments were
executed over a Linux machine running a single Intel i7 cpu
at 3.20GHz. It has 6GB main memory and an 1TB hard
disk. The distributed and parallel experiments were exe-
cuted over a cluster of 17 machines running Hadoop 1.0.3.
One of the 17 machines has an Intel Xeon(R) E5649 cpu
at 2.53 GHz, 100 GB of main memory, and a 2TB hard
disk. It is configured as both the master node and the name
node of the cluster. The other 16 machines in the Hadoop
cluster (the slave nodes) share the same configuration as the
machine we used for the centralized experiments. One Task-
Tracker and DataNode daemon run on each slave. A single
NameNode and JobTracker run on the master. The default
HDFS (Hadoop distributed file system) chunk size is 64MB.

Data sets. We executed our experiments over two large
real datasets. In two dimensions, we used the OpenStreet
data from the OpenStreetMap project. Each dataset rep-
resents the points of interest on the road network for a US
state. The entire dataset has the road networks for 50 states,
containing more than 160 million records in 6.6GB. For our
experiments we focus on only the 48 contiguous states, ex-
cluding Hawaii and Alaska. Each record is a 2-dimensional
coordinate, represented as 2 4-byte floating points. We de-
note this data as the US dataset.

In one dimension, we employed the second real dataset,
Meme, which was obtained from the Memetracker project.
It tracks popular quotes and phrases which appear from var-
ious sources on the internet. The goal is to analyze how
different quotes and phrases compete for coverage every day
and how some quickly fade out of use while others persist
for long periods of time. A record has 4 attributes, the
URL of the website containing the memes, the time Meme-
tracker observed the memes, a list of the observed memes,
and links accessible from the website. We preprocess the

Meme dataset, and convert each record to have an 8-byte
double to represent the time of a single observed meme and
the URL of the website which published the meme, e.g. if
an original record contained a list of 4 memes published at a
given time at a website, 4 records would be produced in the
new dataset. We view these records as a set of timestamps
in 1d, reflecting the distribution of the Meme’s publication
time. After this preprocessing step, the Meme dataset con-
tains more than 300 million records in 10.3GB.

In both 1d and 2d, whenever needed, we randomly sample
records from the full US or the full Meme dataset to obtain
a dataset of smaller size. Figure 1 in Section 1 visualizes
the kernel density estimates built by our MergeReduce al-
gorithms in 1d and 2d, over the full Meme and US datasets
respectively (but only very few data points were plotted, to
ensure that the figures are legible).

General setup. In all experiments, unless otherwise spec-
ified, we vary the values of one parameter of interest, while
keeping the other important parameters at their default val-
ues. Also by default, we randomly generate 5,000 test points
to evaluate the accuracy of an approximate kernel density
estimate. Among these 5,000 points, 4,000 were randomly
selected from the data set P , and the other 1,000 were ran-
domly selected from the domain space M of P (but not from
P itself). We use err to denote the observed ℓ∞ error from
an approximate kernel density estimate Q, which is com-
puted from the evaluations of these 5,000 test points in kdeQ

and kdeP respectively. We try to compare different methods
by setting a proper ε value (the desired error in theory) for
each of them so that they achieve the same observed error.
All experiments report the average of 10 random trials.

6.1 Two Dimensions: Centralized
Default setup. Our default data set is a US data set with
10 million records. The default failure probability δ for the
random sampling method (RS) is set to 0.001. To save space
in the legend in all figures, we used G-MR and Z to denote the
Grid-MR and Zorder methods respectively, and method+RS

to denote the version of running method over a random sam-
ple of P (of size O(1

ε2
log 1

δ
)), instead of runningmethod over

P directly. The default σ value in any kernel density esti-
mate is 200, on a domain of roughly 50,000× 50,000.

Our method+RS. We first study the effect of running our
methods over a random sample of P , when compared against
the results from running them directly over P . Figure 3
shows the results when we vary the value of the common
input parameter for all of them, ε. Not surprisingly, as
shown in Figure 3(a), the observed errors in all methods
are smaller than the desired error ε. All methods produce
smaller observed errors when smaller ε values were used.
Furthermore, under the same ε value, G-MR+RS and Z+RS

produce higher errors than their respective counterpart does,
namely, G-MR and Z. However, the difference is fairly small.
In fact, when err is about 10−2, there are almost no differ-
ence between G-MR+RS (Z+RS) and G-MR (Z).

More importantly however, running a method over a ran-
dom sample of P saves valuable construction time as shown
in Figure 3(b). Figure 3(c) indicates the sizes of the final ap-
proximate kernel density estimates constructed by different
methods are almost the same. This is because that whether
running a method over P or a random sample of P , the final
size of the kernel density estimate Q is largely determined
by ε only. This also means that the query time of these

0.005 0.01 0.05 0.1
10

−4

10
−3

10
−2

ε

er
r

G-MR G-MR+RS

Z Z+RS

(a) err vs. ε.

0.005 0.01 0.05 0.1
4

6

8

10

12

14

ε

T
im

e
(s

ec
on

ds
)

G-MR G-MR+RS

Z Z+RS

(b) Construction time.

0.005 0.01 0.05 0.1
10

3

10
4

10
5

10
6

ε

S
iz

e
(b

yt
es

)

G-MR G-MR+RS

Z Z+RS

(c) Size.

0.005 0.01 0.05 0.1
10

3

10
4

10
5

10
6

10
7

ε

C
om

m
un

ic
at

io
n

(b
yt

es
)

G-MR G-MR+RS

Z Z+RS

(d) Communication.

Figure 3: Effect of guaranteed error ε on the centralized G-MR, G-MR+RS, Z, Z+RS.

10
−4

10
−3

10
−210

0

10
1

10
2

err

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS

IFGT RS

(a) Construction time vs err.

10
−4

10
−3

10
−20

0.2

0.4

0.6

0.8

err

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS

IFGT RS

(b) Query Time.

10
−4

10
−3

10
−210

3

10
5

10
7

err

S
iz

e
(b

yt
es

)

G-MR+RS Z+RS

IFGT RS

(c) Size.

1 5 10 20
10

−1

10
0

10
1

10
2

10
3

n (x106)

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS

IFGT RS

(d) Construction time vs n.

Figure 5: Effect of measured ℓ∞ error err and N on centralized IFGT, RS, G-MR+RS, Z+RS.

methods is almost the same, since the query time depends
on only |Q|. Hence, we have omitted this figure.

Finally, we also investigate the impact to the communi-
cation cost if we run these methods in a cluster. Figure
3(d) shows that this impact is not obvious. Since G-MR and
Z are very effective in saving communication cost already,
collecting a random sample first does not lead to communi-
cation savings. In contrast, doing so might even hurt their
communication cost (if the sample size is larger than what
they have to communicate in our MergeReduce framework).
Nevertheless, all methods are very efficient in terms of the
total bytes sent: a few megabytes in the worst case when
ε = 0.005 over a cluster for 10 million records in P .

In conclusion, these results show that in practice one can
use our method+RS to achieve the best balance in construc-
tion time and accuracy for typically required observed errors.

Our method vs. baseline methods. We first investigate
the construction cost of different alternatives in instantiat-
ing our MergeReduce framework, with different algorithm
for the matching operation. We also include Kernel Herd-
ing (KH) as introduced in Section 5.1. In order to let these
baseline methods complete in a reasonable amount of time,
we used smaller data sets here. From the analysis in Section
5.2, Blossom-MR (denoted as B-MR, representing the the-
oretical algorithm [33]) with a O(nk2) cost for output size
k and Greedy-MR with a O(nk log n) cost are much more
expensive than G-MR. Similarly, KH with a O(nk) cost is
also much more expensive than G-MR which runs in roughly
O(n log k) time. This is even more pronounced in Figures
4(a) and 4(b), showing the construction time of different
methods when varying the observed error err and the size
of the data sets respectively. G-MR is several orders of mag-
nitude faster and more scalable than the other methods.

So the only competing baseline methods we need to con-
sider further are the RS and IFGT methods. We compare
these methods against our methods, G-MR+RS and Z+RS

in Figure 5, using the default 10 million US data set. Fig-
ure 5(a) indicates that, to achieve the same observed error,
RS is the most efficient method in terms of the construction
time. However, our methods G-MR+RS and Z+RS are al-

10
−4

10
−3

10
−2

10
−110

−2

10
0

10
2

10
4

err

T
im

e
(s

ec
on

ds
)

G-MR B-MR

KH Greedy-MR

(a) Build time vs. err.

5 15 50 100
10

−3

10
−1

10
1

10
3

n (x102)

T
im

e
(s

ec
on

ds
)

G-MR B-MR

KH Greedy-MR

(b) Build time vs. n.

Figure 4: Centralized G-MR, B-MR, Greedy-MR, KH.

most as efficient. In contrast, IFGT is almost one order of
magnitude slower. In terms of the query time, Figure 5(b)
shows that all methods achieve a similar query time given
the same observed error, though IFGT does slightly better
for very small err values. Note that we used the multipole
(MP) query evaluation method for the kernel density esti-
mates built from RS, G-MR+RS, and Z+RS. On the other
hand, Figure 5(c) shows that the kernel density estimates
built from both IFGT and RS have much larger size than that
produced in our methods G-MR+RS and Z+RS, by 2 to 3,
and 1 to 2 orders of magnitude respectively. Finally, Figure
5(d) indicates that all methods have very good scalability
in their construction time when the data set size increases
from 1 million to 20 million, but G-MR+RS, Z+RS, and RS

are clearly much more efficient than IFGT.
In conclusion, our methods are almost as efficient as RS

in terms of building a kernel density estimate, and they are
much more efficient than IFGT. Our methods also share sim-
ilar query time as IFGT and RS, while building much smaller
kernel density estimates (in size) than both IFGT and RS.

6.2 Two Dimensions: Parallel and Distributed
Default setup. In this case, we change the default data
set to a US data set with 50 million records, while keeping
the other settings the same as those in Section 6.1. Fur-
thermore, since IFGT is much slower in building a kernel
density estimate (even more so for larger data sets), and
it is also a heuristic without theoretical guarantees (in con-
trast to the other 3 methods), in the distributed and parallel
setting, we focus on comparing our methods against the RS

10
−5

10
−4

10
−3

10
−220

40

60

80

100

120

err

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS RS

(a) Construction time.

10
−5

10
−4

10
−3

10
−210

4

10
5

10
6

10
7

10
8

10
9

err

C
om

m
un

ic
at

io
n

(b
yt

es
)

G-MR+RS Z+RS RS

(b) Communication.

10
−5

10
−4

10
−3

10
−210

4

10
5

10
6

10
7

10
8

err

S
iz

e
(b

yt
es

)

G-MR+RS Z+RS RS

(c) Size.

10
−5

10
−4

10
−3

10
−20.2

0.4

0.6

0.8

1

err

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS RS

(d) Query time.

Figure 6: Effect of measured ℓ∞ error err on distributed and parallel G-MR+RS, Z+RS, RS.

method. Moreover, IFGT works only for the Gaussian kernel
and needs to be provided the bandwidth σ ahead of time,
whereas our methods and RS do not. For space, we omit
experiments showing varying σ has mild effects on our algo-
rithms and RS, but can lead to strange effects in IFGT.

Our methods vs. RS. We compare the performance of our
methods, G-MR+RS and Z+RS, against RS on the aforemen-
tioned Hadoop cluster. Figure 6 reports the results when
we vary the observed error err for different methods (by ad-
justing their ε values properly so they output roughly the
same err). Figure 6(a) shows that RS is the most efficient
method to construct an approximate kernel density estimate
for small err values, but G-MR+RS and Z+RS become al-
most as efficient as RS once err is no smaller than 10−4 which
is sufficient for many practical applications. In those cases,
all three methods take less than 40 seconds to construct
an approximate KDE for 50 million records. All methods
are highly communication-efficient, as shown in Figure 6(b).
There are almost no difference among the 3 methods: they
communicate only a few MBs over the cluster to achieve an
err of 10−4, and tens or hundreds of KBs for err between
10−2 and 10−3. In terms of the size of the approximate
kdeQ, not surprisingly, RS is always the largest. By our
analysis in Sections 5.2 and Sections 5.3, |Q| is O(1

ε2
log 1

δ
)

for RS, and onlyO(1
ε
log2.5 1

ε
) for both G-MR+RS and Z+RS.

This is clearly reflected in Figure 6(c), where |Q| is 1-2 or-
ders of magnitude larger from RS than from G-MR+RS and
Z+RS. Finally, we investigate the query time using Q in Fig-
ure 6(d). In general, the query time should be linear to |Q|.
But in practice, since we have used the fast query evaluation
technique, the multipole (MP) method as shown in Section
5.4, all three methods have similar query time.

We thus conclude that our methods, G-MR+RS and Z+RS

perform better than RS. More importantly, they also have
much better theoretical guarantees (in order to achieve to
same desired error ε in theory), which is critical in practice
since users typically use a method by setting an ε value, and
for the same ε value, our methods will outperform RS by
orders of magnitude (O(1

ε
log2.5 1

ε
) vs. O(1

ε2
log 1

δ
)). Never-

theless, to be as fair as possible, we experimentally compared
methods by first running a few trials to set a proper ε value
so each method has roughly the same observed error err.

30 50 70 100
25

30

35

40

n (x106)

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS RS

(a) Time.

30 50 70 100
8.8

9

9.2

9.4

9.6x 10
5

n (x106)

C
om

m
un

ic
at

io
n

(b
yt

es
)

G-MR+RS Z+RS RS

(b) Communication.

Figure 7: Effect of n on G-MR+RS, Z+RS, RS.

We also study the scalability of these methods in Figure 7
by varying the size of the data from 30 million to 100 million
records. Not surprisingly, all three methods are extremely
scalable in both their construction time (almost linear to n)
and communication cost (almost constant to n). Commu-
nication only increases by 0.8 × 105 bytes when the total
communication is about 9− 10× 105 bytes; such increase is
due to the overhead in Hadoop to handle more splits (as n
increases), rather than the behavior of our algorithms which
is independent from n in communication cost.

6.3 Two Dimensions: Is RS Good Enough?
To show our advantages over random sampling, we provide

more centralized experiments here for higher precision. The
trends in the parallel and distributed setting will be similar.

Getting higher precision results from a kernel density es-
timate can be very desirable. The error of kernel density
estimates over samples is with respect to kdeP (x) = 1

|P |
∑

p∈P K(p, x), but for large spatial data sets, often only a
small fraction of points have non-negligible effect on a query
x, so dividing by |P | can make kdeP (x) quite small. Here
it can be of critical importance to have very small error.
Another use case of kernel density estimates is in n-body
simulations in statistical physics [1], where high precision is
required to determine the force vector at each step. Further-
more, note that a user typically uses these methods with a
desirable error as the input, which is set as the input error
parameter, the ε value; even though the observed error err
on a data set may be smaller than ε. In that case, all of our
methods have (roughly) a O(1

ε
/ log 1

ε
) factor improvement

in the kde size, which is a critical improvement especially
when ε needs to be small (for high precision applications).

We observe experiments in Figure 8 which compares G-

MR+RS and Z+RS with RS in terms of construction time
and size of the samples. (Note that figures for query time
were omitted for the interest of space; but not surprisingly,
they are roughly linear to the kde size). We plot the figures
based on input error parameter ε and observed error err.
For the plot with respect to ε (Figure 8(a), 8(c)), when ε
becomes smaller than 5 ∗ 10−4, the construction time and
size for RS remain constant as the sample size needed for RS
becomes larger than the size of the original dataset. Since
we then don’t need to sample, the construction time and
observed error for RS are 0. For small ε values, G-MR+RS

and Z+RS are clever enough to test if random sampling is
beneficial, and if not the random sampling step is bypassed.

For the higher precision observed error, the results (Fig-
ures 8(b), 8(d)) clearly demonstrate the superiority our pro-
posed methods over RS, reducing both construction time and
saving orders of magnitude in terms of both query time and
size. We cannot achieve higher precision for RS when the
observed error is smaller than 10−5, since in those cases, ε
is small enough that the random sample size is as big as the

10
−5

10
−3

10
−130

40

50

60

70

err

T
im

e
(s

ec
on

ds
)

SS RS

(a) Construction time.

10
−5

10
−3

10
−110

3

10
5

10
7

10
9

err

C
om

m
un

ic
at

io
n

(b
yt

es
)

SS RS

(b) Communication.

10
−5

10
−3

10
−110

1

10
3

10
5

10
7

10
9

err

S
iz

e
(b

yt
es

)

SS RS

(c) Size.

10
−5

10
−3

10
−110

−3

10
−2

10
−1

10
0

10
1

10
2

err

T
im

e
(s

ec
on

ds
)

SS RS

(d) Query time.

Figure 9: Effect of varying measured err on RS, SS on one-dimensional data.

size of the original dataset (i.e., kde from a random sample
consists of the entire original dataset, leading to no error).

6.4 One Dimension: Parallel and Distributed
Default setup. We now shift our attention in 1d. The
default data set is Meme with 50 million records, δ = 0.001,
and σ at 1 day, over 273 days of data. Since GS (group-
ing selection) is a complementary technique that works with
any other method, we focus on RS and SS (sort selection).
We only report the results from the parallel and distributed
setting. The trends in the centralized setting are similar.

SS vs.RS. By varying the observed error err, Figure 9 com-
pares the two methods across different metrics. To achieve
smaller observed errors in constructing kdeQ, SS is more
efficient as shown in Figure 9(a), but RS becomes faster for
larger observed errors. A similar trend is observed for the
communication cost in Figure 9(b). In terms of reducing the
size of Q, SS does a much better job than RS as shown in
Figure 9(c), |Q| in SS is 1-4 orders of magnitude smaller than
|Q| in RS, the gap is particularly large for smaller observed
errors. This translates to the query time in Figure 9(d),
where evaluating kdeQ(x) using Q produced by SS is much
faster than doing so over Q from RS for most observed er-
rors. When err becomes large, around 10−2, the RS method
catches up, corresponding to the sizes of Q becoming closer.

In conclusion, SS in general performs better than or com-
parable to RS on observed error. But it has much better
theoretical guarantees in size and query time as shown in
Section 4 (1

ε
vs. O(1

ε2
log 1

δ
)), which is critical in practice

since users generally use a method by setting an ε value.

0.05 0.1 0.5 1
0

10

20

30

ε (x10−3)

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS RS

(a) Construction Time.

10
−6

10
−5

10
−45

10

15

20

25

30

err

T
im

e
(s

ec
on

ds
)

G-MR+RS Z+RS RS

(b) Construction Time.

0.05 0.1 0.5 1

10
6

10
7

10
8

10
9

ε (x10−3)

S
iz

e
(b

yt
es

)

G-MR+RS Z+RS RS

(c) Size.

10
−6

10
−5

10
−4

10
6

10
7

10
8

err

S
iz

e
(b

yt
es

)

G-MR+RS Z+RS RS

(d) Size.

Figure 8: Effect of ε and ℓ∞ error err on G-MR+RS,
Z+RS, RS for high precision case.

7. CONCLUSION
This paper presents the new state-of-the-art for comput-

ing kernel density estimates over enormous real world data
sets (up to 100 million points). These are essential statistical
tools for large-scale data analysis and physical simulations.
Our methods produce a coreset representation of the data
which can be used as proxy for the true data while guar-
anteeing approximation error on size and runtime. More-
over, an extensive experimental study demonstrates that
our methods provide clear improvements over existing tech-
niques in terms of size, accuracy, and runtime. Interesting
open problems include extending to kernel approximation
on complex data types, such as graph and string kernels.

8. REFERENCES
[1] A. W. Appel. An efficient program for many-body simulation.

SIAM J.Scientific and Statistical Computing, 6:85–103, 1985.

[2] N. Aronszajn. Theory of reproducing kernels. Transactions

AMS, 68:337–404, 1950.

[3] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich.
Deterministic sampling and range counting in geometric data
streams. ACM Transactions on Algorithms, 3:16, 2007.

[4] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic
closest-pair and n-body potential fields. In SODA, 1995.

[5] B. Chazelle. The Discrepancy Method. Cambridge, 2000.

[6] B. Chazelle and J. Matousek. On linear-time deterministic
algorithms for optimization problems in fixed dimensions.
Journal of Algorithms, 21:579–597, 1996.

[7] Y. Chen, M. Welling, and A. Smola. Super-samples from kernel
hearding. In Conference on Uncertainty in Artificial
Intellegence, 2010.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. In PODS, 2006.

[9] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal
sampling from distributed streams. In PODS, 2010.

[10] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for
approximate and exact maximum weight matching. Technical
report, arXiv:1112.0790, 2011.

[11] J. Edmonds. Paths, trees, and flowers. Canadian Journal of

Mathematics, 17:449–467, 1965.

[12] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An
efficient indexing scheme for range-aggregate queries. In ICDT,
pages 143–157, 2003.

[13] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube:
A relational aggregation operator generalizing group-by,
cross-tab, and sub-total. In ICDE, 1996.

[14] L. Greengard and J. Strain. The fast Gauss transform. Journal
Scientific and Statistical Computing, 12, 1991.

[15] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD, 2001.

[16] S. Guha, N. Koudas, and K. Shim. Approximation and
streaming algorithms for histogram construction problems.
ACM TODS, 31:396–438, 2006.

[17] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.
Approximating multi-dimensional aggregate range queries over
real attributes. In SIGMOD, pages 463–474, 2000.

[18] S. Har-Peled. Geometric Approximation Algorithms. Chapter
2. American Mathematical Society, 2011.

[19] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In ICDE, 1997.

[20] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range
queries in OLAP data cubes. In SIGMOD, 1997.

[21] Z. Huang, L. Wang, K. Yi, and Y. Liu. Sampling based
algorithms for quantile computation in sensor networks. In
SIGMOD, pages 745–756, 2011.

[22] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In VLDB, 1998.

[23] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of
bandwidth selection for density esimation. American Statistical
Association, 91:401–407, 1996.

[24] S. Joshi, R. V. Kommaraju, J. M. Phillips, and
S. Venkatasubramanian. Comparing distributions and shapes
using the kernel distance. In ACM SoCG, 2011.

[25] V. Kolmogorov. BLOSSOM V: A new implementation of a
minimum cost perfect matching algorithm. Mathematical
Programming, 1(1), 2009.

[26] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal
histograms for hierarchical range queries. In PODS, 2000.

[27] X. Lin, J. Xu, Q. Zhang, H. Lu, J. X. Yu, X. Zhou, and
Y. Yuan. Approximate processing of massive continuous
quantile queries over high-speed data streams. TKDE,
18(5):683–698, 2006.

[28] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate
medians and other quantiles in one pass and with limited
memory. In SIGMOD, pages 426–435, 1998.

[29] J. Matoušek. Approximations and optimal geometric
divide-and-conquer. In STOC, 1991.

[30] J. Matoušek. Geometric Discrepancy. Springer, 1999.

[31] E. Parzen. On estimation of a probability density function and
mode. Annals of Mathematical Statistics, 33:1065–1076, 1962.

[32] E. Parzen. Probability density functionals and reproducing
kernel Hilbert spaces. In Proceedings of the Symposium on

Time Series Analysis, pages 155–169, 1963.

[33] J. M. Phillips. ε-samples for kernels. In SODA, 2013.

[34] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD, pages 294–305, 1996.

[35] V. C. Raykar and R. Duraiswami. Fast optimal bandwidth
selection for kernel density estimation. In SDM, 2006.

[36] V. C. Raykar, R. Duraiswami, and L. H. Zhao. Fast
computation of kernel estimators. J. of Computational and

Graphical Statistics, 19(1):205–220, 2010.

[37] M. Rosenblatt. Remarks on some nonparametric estimates of a
density function. A. Math. Stat., 27:832–837, 1956.

[38] B. Schölkopf and A. J. Smola. Learning with Kernels: Support

Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, 2002.

[39] D. W. Scott. Multivariate Density Estimation: Theory,
Practice, and Visualization. Wiley, 1992.

[40] J. Shawe-Taylor and N. Cristianini. Kernel Methods for

Pattern Analysis. Cambridge University Press, 2004.

[41] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and
S. Vishwanathan. Hash kernels for structured data. Journal of
Machine Learning Research, 10:2615–2637, 2009.

[42] B. W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman & Hall/CRC, 1986.

[43] S. Suri, C. D. Tóth, and Y. Zhou. Range counting over
multidimensional data streams. Discrete and Computational

Geometry, 36:633–655, 2006.

[44] B. A. Turlach. Bandwidth selection in kernel density
estimation: A review. Discussion paper 9317, Istitut de
Statistique, UCL, Louvain-la-Neuve, Belgium.

[45] K. R. Varadarajan. A divide-and-conquer algorithm for
min-cost perfect matching in the plane. In FOCS, 1998.

[46] J. S. Vitter. Random sampling with a reservoir. ACM

Transactions on Mathematical Software, 11(1):37–57, 1985.

[47] J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation
and histograms via wavelets. In CIKM, 1998.

[48] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and
A. Smola. Feature hashing for large scale multitask learning. In
ICML, 2009.

[49] C. Yang, R. Duraiswami, and L. S. Davis. Efficient kernel
machines using the improved fast gauss transform. In NIPS,
2004.

[50] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis.
Improved fast gauss transform and efficient kernel density
estimation. In ICCV, 2003.

[51] T. Zhang, R. Ramakrishnan, and M. Livny. Fast density
estimation using cf-kernel for very large databases. In KDD,
pages 312–316, 1999.

9. APPENDIX
Proof. of Lemma 2: We use a result from Joshi et.al. [24]

(Theorem 5.1) that states that if Q ⊂ P satisfies the fol-
lowing property (actually something more general), then
‖kdeP − kdeQ‖∞ ≤ α. For any interval I = [a, b] we must
have ||Q∩I |/|Q|− |P ∩I |/|P || ≤ α. So we just need to show
that the interval property is satisfied with α = 2ε.

First note that any set Pj that is either entirely not in
I (that is |I ∩ Pj | = 0) or in I (that is |Pj ∩ I | = |Pj |)
contributes to |Q ∩ I |/|Q| the same as |P ∩ I |/|P | and this
has no effect on the difference between the two. Since the
sets are sorted, there are at most two sets Pj′ and Pj′′ which
contribute to the interval query error, depending on if qj′
and qj′′ are in I or not. Since |Pj |/|P | and |{qj}|/|Q| are at
most ε, then the total error of leaving qj′ and qj′′ in or out
is at most α = ε+ ε = 2ε.

To see the tighter bound, note that if qj′ (resp. qj′′) is in
I , then at least half of Pj′ (resp. Pj′′) is also in I . Thus
each can contribute at most ε/2 to the error, leading to total
error α = ε/2 + ε/2 = ε.

Proof. of Theorem 2: MergeReduce takes O(log n
k
)

rounds. In the ith round, we have n
2i−1k

sets of points and
each set has k points. We arbitrarily pair two sets, and
run the Blossom matching algorithm over the union of 2k
points. This step takes O(n

2ik
(2k)3) time. Note that the

second part in a reduce step takes only linear time. Hence,

the total running time is
∑log n

k

i=1
n

2ik
(2k)3 which is O(nk2).

The main result of [33] shows that each round on ni =
n/2i−1 points produces a O(

√
log ni/ni)-approximate KDE

of the previous round, so after log n
k
rounds the error is

log(n/k)
∑

i=1

√

log(n/2i)

n/2i
= O

(

1

k
log

n

k

√

log k

)

with constant probability. Setting k = O(1
ε
log n

√

log 1
ε
)

achieves ε error total and a runtime of O(n
ε2

log2 n log 1
ε
).

Sampling O(1
ε2
) points first takes O(n) time and effec-

tively sets n = 1
ε2

in the bound above. The with-sampling
result follows.

Proof. of Theorem 3: MergeReduce hasO(log n
k
) rounds.

In the ith round, we have n
2i−1k

sets of points and each set
has k points. We arbitrarily pair all sets and for each pair
run Grid over the union of 2k points, in totalO(n

2ik
(2k) log 1

ε
)

time. Note that the second part in a reduce step takes only

linear time. Hence, the total running time is
∑log n

k

i=1
n

2ik
(2k)·

log(1/ε) which is O(n log(1/ε)).
The main result of [33] (now adjusting for CM) shows that

each round on ni = n/2i−1 points produces aO(CM

√
log ni/ni)-

approximate KDE of the previous round, so after log n
k
rounds

the approximation error is

log(n/k)
∑

i=1

CM

√

log(n/2i)

n/2i
= O

(

CM

k
log

n

k

√

log k

)

with constant probability. Since by Lemma 4 we have CM =
O(log(1/ε)), setting k = O(1

ε
log n log1.5 1

ε
) achieves ε error

total and a runtime of O(n log 1
ε
) using Grid-MR.

Sampling O(1
ε2
) points first takes O(n) time and effec-

tively sets n = 1
ε2

in the bound above. The Grid-MR+RS

result follows.

