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Abstract. Consider a point set D with a measure function µ : D→ R.
Let A be the set of subsets of D induced by containment in a shape from
some geometric family (e.g. axis-aligned rectangles, half planes, balls, k-
oriented polygons). We say a range space (D,A) has an ε-approximation
P if

max
R∈A

˛̨̨̨
µ(R ∩ P )

µ(P )
− µ(R ∩D)

µ(D)

˛̨̨̨
≤ ε.

We describe algorithms for deterministically constructing discrete ε-app-
roximations for continuous point sets such as distributions or terrains.
Furthermore, for certain families of subsets A, such as those described
by axis-aligned rectangles, we reduce the size of the ε-approximations by
almost a square root from O( 1

ε2 log 1
ε
) to O( 1

ε
polylog 1

ε
). This is often

the first step in transforming a continuous problem into a discrete one for
which combinatorial techniques can be applied. We describe applications
of this result in geo-spatial analysis, biosurveillance, and sensor networks.

1 Introduction

Representing complex objects by point sets may require less storage and may
make computation on them faster and easier. When properties of the point
set approximate those of the original object, then problems over continuous or
piecewise-linear domains are now simple combinatorial problems over point sets.
For instance, when studying terrains, representing the volume by the cardinality
of a discrete point set transforms calculating the difference between two terrains
in a region to just counting the number of points in that region. Alternatively,
if the data is already a discrete point set, approximating it with a much smaller
point set has applications in selecting sentinel nodes in sensor networks. This pa-
per studies algorithms for creating small samples with guarantees in the form of
discrepancy and ε-approximations, in particular we construct ε-approximations
of size O( 1

ε polylog 1
ε ).
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ε-approximations. In this paper we study point sets, which we call domains
and we label as D, which are either finite sets or are Lebesgue-measureable sets.
For a given domain D let A be a set of subsets of D induced by containment in
some geometric shape (such as balls or axis-aligned rectangles). The pair (D,A)
is called a range space. We say that P is an ε-approximation of (D,A) if

max
R∈A

∣∣∣∣ |R ∩ P ||P |
− |R ∩D|

|D|

∣∣∣∣ ≤ ε,
where | · | represents the cardinality of a discrete set or the Lebesgue measure
for a Lebesgue-measurable set. A is said to shatter a discrete set X ⊆ D if each
subset of X is equal to R ∩ X for some R ∈ A. The cardinality of the largest
discrete set X that A can shatter is known as the VC-dimension. A classic result
of Vapnik and Chervonenkis [28] states that for any range space (D,A) with
constant VC-dimension v there exists a subset P ⊂ D consisting of O( vε2 log v

ε )
points that is an ε-approximation for (D,A). Furthermore, if each element of P
is drawn uniformly at random from D such that |P | = O( vε2 log v

εδ ), then P is an
ε-approximation with probability at least 1− δ. Thus, for a large class of range
spaces random sampling produces an ε-approximation of size O( 1

ε2 log 1
ε ).

Deterministic construction of ε-approximations. There exist determinis-
tic constructions for ε-approximations. When D is the unit cube [0, 1]d there are
constructions which can be interpreted as ε-approximations of size O( 1

ε2d/(d+1) )
for half spaces [16] and O( 1

ε2d/(d+1) logd/(d+1) 1
εpolylog(log 1

ε )) for balls in d-
dimensions [5]. Both have lower bounds of Ω( 1

ε2d/(d+1) ) [2]. See Matoušek [17]
for more similar results or Chazelle’s book [9] for applications. For a domain
D, let Rd describe the subsets induced by axis-parallel rectangles in d dimen-
sions, and let Qk describe the subsets induced by k-oriented polygons (or more
generally polytopes) with faces described by k predefined normal directions.
More precisely, for β = {β1, . . . , βk} ⊂ Sd−1, let Qβ describe the set of con-
vex polytopes such that each face has an outward normal ±βi for βi ∈ β. If β
is fixed, we will use Qk to denote Qβ since it is the size k and not the actual
set β that is important. When D = [0, 1]d, then the range space (D,Rd) has
an ε-approximation of size O( 1

ε logd−1 1
εpolylog(log 1

ε )) [12]. Also, for all homo-
thets (translations and uniform scalings) of any particular Q ∈ Qk, Skriganov
constructs an ε-approximation of size O( 1

ε logd−1 1
εpolylog(log 1

ε )). When D is a
discrete point set of size n, ε-approximations of size O(( 1

ε log 1
ε )2−

2
v+1 ) exist for

bounded VC-dimension v [19], and can be constructed in time O(n · 1
ε2v logv 1

ε ).
In this spirit, for R2 and a discrete point set of size n, Suri, Toth, and Zhou [26]
construct an ε-approximation of size O( 1

ε log(εn) log4( 1
ε log(εn))) in the context

of a streaming algorithm which can be analyzed to run in time O(n( 1
ε log4 1

ε )3).

Our results. We answer the question, “for which ranges spaces can we construct
ε-approximations of size O( 1

ε polylog 1
ε )?” by describing how to deterministically

construct an ε-approximation of size O( 1
ε polylog 1

ε ) for any domain which can



be decomposed into or approximated by a finite set of constant-size polytopes
for families Rd and Qk. In particular:

– For a discrete point set D of cardinality n, we give an algorithm for gen-
erating an ε-approximation for (D,Qk) of size O( 1

ε log2k 1
εpolylog(log 1

ε )) in
O(n 1

ε3 polylog 1
ε ) time. This requires a generalization of the iterative point

set thinning algorithm by Chazelle and Matoušek [10] that does not rely on
VC-dimension. This implies similar results for Rd as well.

– For any d-dimensional domain D that can be decomposed into n k′-oriented
polytopes, we give an algorithm for generating an ε-approximation of size
O((k+k′) 1

ε log2k 1
εpolylog(log 1

ε )) for (D,Qk) in timeO((k+k′)n 1
ε4 polylog 1

ε ).

We are interested in terrain domains D defined to have a base B (which may,
for instance, be a subset of R2) and a height function h : B → R. Any point
(p, z) such that p ∈ B and 0 ≤ z ≤ h(p) (or 0 ≥ z ≥ h(p) when h(p) < 0) is in
the domain D of the terrain.

– For a terrain domain D where B and h are piecewise-linear with n lin-
ear pieces, our result implies that there exists an ε-approximation of size
O(k 1

ε log4 1
εpolylog(log 1

ε )) for (D,Qk), and it can be constructed in O(n ·
1
ε4 polylog 1

ε ) time.
– For a terrain domain D where B ⊂ R2 is a rectangle with diameter d and h

is smooth (C2-continuous) with minimum height z− and largest eigenvalue
of its Hessian λ, we give an algorithm for creating an ε-approximation for
(D,R2 × R) of size O( 1

ε log4 1
εpolylog(log 1

ε )) in time O(λd
2

z−
1
ε5 polylog 1

ε ).

These results improve the running time for a spatial anomaly detection prob-
lem in biosurveillance [1], and can more efficiently place or choose sentinel nodes
in a sensor network, addressing an open problem [21].

Roadmap. We introduce a variety of new techniques, rooted in discrepancy the-
ory, to create ε-approximations of size O( 1

ε polylog 1
ε ) for increasingly difficult

domains. First, Section 2 discusses Lebesgue and combinatorial discrepancy. Sec-
tion 3 generalizes and improves a classic technique to create an ε-approximation
for a discrete point set. Section 4 describes how to generate an ε-approximation
for a polygonal domain. When a domain can be decomposed into a finite, disjoint
set of polygons, then each can be given an ε-approximation and the union of all
these point sets can be given a smaller ε-approximation using the techniques in
Section 3. Section 5 then handles domains of continuous, non-polygonal point
sets by first approximating them by a disjoint set of polygons and then using the
earlier described techniques. Section 6 shows some applications of these results.

2 Lebesgue and Combinatorial Discrepancy

Lebesgue discrepancy. The Lebesgue discrepancy is defined for an n-point
set P ⊂ [0, 1]d relative to the volume of a unit cube [0, 1]d. 1 Given a range space
1 Although not common in the literature, this definition can replace [0, 1]d with an

hyper-rectangle [0, w1]× [0, w2]× . . .× [0, wd].



([0, 1]d,A) and a point set P , the Lebesgue discrepancy is defined

D(P,A) = sup
R∈A
|D(P,R)|, where D(P,R) = n · |R ∩ [0, 1]d| − |R ∩ P |.

Optimized over all n-point sets, define the Lebesgue discrepancy of ([0, 1]d,A) as

D(n,A) = inf
P⊂[0,1]d,|P |=n

D(P,A).

The study of Lebesgue discrepancy arguably began with the Van der Cor-
put set Cn [27], which satisfies D(Cn,R2) = O(log n). This was generalized to
higher dimensions by Hammersley [13] and Halton [12] so that D(Cn,Rd) =
O(logd−1 n). However, it was shown that many lattices also provide O(log n)
discrepancy in the plane [17]. This is generalized to O(logd−1 n log1+τ log n) for
τ > 0 over Rd [22, 23, 6]. For a more in-depth history of the progression of these
results we refer to the notes in Matoušek’s book [17]. For application of these re-
sults in numerical integration see Niederreiter’s book [20]. The results on lattices
extend to homothets of any Qk ∈ Qk for O(log n) discrepancy in the plane [22]
and O(logd−1 n log1+τ log n) discrepancy, for τ > 0, in Rd [24], for some constant
k. A wider set of geometric families which include half planes, right triangles,
rectangles under all rotations, circles, and predefined convex shapes produce
Ω(n1/4) discrepancy and are not as interesting from our perspective.

Lebesgue discrepancy describes an ε-approximation of ([0, 1]d,A), where ε =
f(n) = D(n,A)/n. Thus we can construct an ε-approximation for ([0, 1]d,A) of
size gD(ε,A) as defined below. (Solve for n in ε = D(n,A)/n).)

gD(ε,A) =

{
O( 1

ε logτ 1
ε polylog(log 1

ε )) for D(n,A) = O(logτ n)
O((1/ε)1/(1−τ)) for D(n,A) = O(nτ )

(1)

Combinatorial discrepancy. Given a range space (X,A) where X is a finite
point set and a coloring function χ : X → {−1,+1} we say the combinatorial
discrepancy of (X,A) colored by χ is

discχ(X,A) = max
R∈A

discχ(X ∩R) where

discχ(X) =
∑
x∈X

χ(x) = |{x ∈ X : χ(x) = +1}| − |{x ∈ X : χ(x) = −1}| .

Taking this over all colorings and all point sets of size n we say

disc(n,A) = max
{X:|X|=n}

min
χ:X→{−1,+1}

discχ(X,A).

Results about combinatorial discrepancy are usually proved using the par-
tial coloring method [4] or the Beck-Fiala theorem [8]. The partial coloring
method usually yields lower discrepancy by some logarithmic factors, but is
nonconstructive. Alternatively, the Beck-Fiala theorem actually constructs a
low discrepancy coloring, but with a slightly weaker bound. The Beck-Fiala



theorem states that for a family of ranges A and a point set X such that
maxx∈X |{A ∈ A : x ∈ A}| ≤ t, disc(X,A) ≤ 2t − 1. So the discrepancy
is only a constant factor larger than the largest number of sets any point is in.

Srinivasan [25] shows that disc(n,R2) = O(log2.5 n), using the partial coloring
method. An earlier result of Beck [3] showed disc(n,R2) = O(log4 n) using the
Beck-Fiala theorem [8]. The construction in this approach reduces to O(n) Gaus-
sian eliminations on a matrix of constraints that is O(n)×O(n). Each Gaussian
elimination step requires O(n3) time. Thus the coloring χ in the construction
for disc(n,R2) = O(log4 n) can be found in O(n4) time.We now generalize this
result.

Lemma 1. disc(n,Qk) = O(log2k n) for points in Rd and the coloring that gen-
erates this discrepancy can be constructed in O(n4) time, for k constant.

The proof combines techniques from Beck [3] and Matoušek [18].

Proof. Given a class Qk, each potential face is defined by a normal vector from
{β1, . . . , βk}. For j ∈ [1, k] project all points along βj . Let a canonical interval be
of the form

[
t
2q ,

t+1
2q

)
for integers q ∈ [1, log n] and t ∈ [0, 2q). For each direction

βj choose a value q ∈ [1, log n] creating 2q canonical intervals induced by the
ordering along βj . Let the intersection of any k of these canonical intervals along
a fixed βj be a canonical subset. Since there are log n choices for the values of
q for each of the k directions, it follows that each point is in at most (log n)k

canonical subsets. Using the Beck-Fiala theorem, we can create a coloring for X
so that no canonical subset has discrepancy more than O(logk n).

Each range R ∈ Qk is formed by at most O(logk n) canonical subsets. For
each ordering by βi, the interval in this ordering induced by R can be described
by O(log n) canonical intervals. Thus the entire range R can be decomposed into
O(logk n) canonical subsets, each with at most O(logk n) discrepancy.

Applying the Beck-Fiala construction of size n, this coloring requires O(n4)
time to construct.

Corollary 1. disc(n,Rd) = O(log2d n) and the coloring that generates this dis-
crepancy can be constructed in O(n4) time, for d constant.

A better nonconstructive bound exists due to Matoušek [18], using the partial
coloring method. For polygons in R2 disc(n,Qk) = O(k log2.5 n

√
log(k + log n)),

and for polytopes in Rd disc(n,Qk) = O(k1.5bd/2c logd+1/2 n
√

log(k + log n)).
For more results on discrepancy see Beck and Chen’s book [7].

Similar to Lebesgue discrepancy, the set P = {p ∈ X | χ(p) = +1} generated
from the coloring χ for combinatorial discrepancy disc(n,A) describes an ε-
approximation of (X,A) where ε = f(n) = disc(n,A)/n. Thus, given this value
of ε, we can say that P is an ε-approximation for (X,A) of size

g(ε,A) =

{
O( 1

ε logτ 1
ε polylog(log 1

ε )) for disc(n,A) = O(logτ n)
O((1/ε)1/(1−τ)) for disc(n,A) = O(nτ ).

(2)

The next section will describe how to iteratively apply this process efficiently to
achieve these bounds for any value of ε.



3 Deterministic Construction of ε-approximations for
Discrete Point Sets

We generalize the framework of Chazelle and Matoušek [10] describing an al-
gorithm for creating an ε-approximation of a range space (X,A). Consider any
range space (X,A), with |X| = n, for which there is an algorithm to gener-
ate a coloring χ that yields the combinatorial discrepancy discχ(X,A) and can
be constructed in time O(nw · l(n)) where l(n) = o(n). For simplicity, we refer
to the combinatorial discrepancy we can construct discχ(X,A) as disc(n,A) to
emphasize the size of the domain, and we use equation (2) to describe g(ε,A),
the size of the ε-approximation it corresponds to. The values disc(n,A), w, and
l(n) are dependent on the family A (e.g. see Lemma 1), but not necessarily its
VC-dimension as in [10]. As used above, let f(n) = disc(n,A)/n be the value
of ε in the ε-approximation generated by a single coloring of a set of size n —
the relative error. We require that, f(2n) ≤ (1− δ)f(n), for constant 0 < δ ≤ 1;
thus it is a geometrically decreasing function.

The algorithm will compress a setX of size n to a set P of size O(g(ε,A)) such
that P is an ε-approximation of (X,A) by recursively creating a low discrepancy
coloring. We note that an ε-approximation of an ε′-approximation is an (ε+ ε′)-
approximation of the original set.

We start by dividing X into sets of size O(g(ε,A)),2 here ε is a parameter.
The algorithm proceeds in two stages. The first stage alternates between merging
pairs of sets and halving sets by discarding points colored χ(p) = −1 by the
combinatorial discrepancy method described above. The exception is after every
w + 2 halving steps, we then skip one halving step. The second stage takes the
one remaining set and repeatedly halves it until the error f(|P |) incurred in the
remaining set P exceeds ε

2+2δ . This results in a set of size O(g(ε,A)).

Algorithm 3.1 Creates an ε-approximation for (X,A) of size O(g(ε,A)).
1: Divide X into sets {X0, X1, X2, . . .} each of size 4(w + 2)g(ε,A). 2

2: repeat {Stage 1}
3: for w + 2 steps do {or stop if only one set is left}
4: Merge: Pair sets arbitrarily (i.e. Xi and Xj) and merge them into a single

set (i.e. Xi := Xi ∪Xj).
5: Halve: Halve each set Xi using the coloring χ from disc(Xi,A) (i.e. Xi =

{x ∈ Xi | χ(x) = +1}).
6: Merge: Pair sets arbitrarily and merge each pair into a single set.
7: until only one set, P , is left
8: repeat {Stage 2}
9: Halve: Halve P using the coloring χ from disc(P,A).

10: until f(|P |) ≥ ε/(2 + 2δ)

2 If the sets do not divide equally, artificially increase the size of the sets when neces-
sary. These points can be removed later.



Theorem 1. For a finite range space (X,A) with |X| = n and an algorithm to
construct a coloring χ : X → {−1,+1} such that

– the set {x ∈ X : χ(x) = +1} is an α-approximation of (X,A) of size
g(α,A) with α = discχ(X,A)/n (see equation (2)).

– χ can be constructed in O(nw · l(n)) time where l(n) = o(n).

then Algorithm 3.1 constructs an ε-approximation for (X,A) of size O(g(ε,A))
in time O(ww−1n · g(ε,A)w−1 · l(g(ε,A)) + g(ε,A)).

Proof. Let 2j = 4(w + 2)g(ε,A), for an integer j, be the size of each set in the
initial dividing stage (adjusting by a constant if δ ≤ 1

4 ). Each round of Stage 1
performs w + 3 Merge steps and w + 2 Halve steps on sets of the same size
and each subsequent round deals with sets twice as large. The union of all the
sets is an α-approximation of (X,A) (to start α = 0) and α only increases in
the Halve steps. The ith round increases α by f(2j−1+i) per Halve step. Since
f(n) decrease geometrically as n increases, the size of α at the end of the first
stage is asymptotically bounded by the increase in the first round. Hence, after
Stage 1 α ≤ 2(w+ 2)f(4(w+ 2)g(ε,A)) ≤ ε

2 . Stage 2 culminates the step before
f(|P |) ≥ ε

2+2δ . Thus the final Halve step creates an εδ
2+2δ -approximation and

the entire second stage creates an ε
2 -approximation, hence overall Algorithm 3.1

creates an ε-approximation. The relative error caused by each Halve step in
stage 2 is equivalent to a Halve step in a single round of stage 1.

The running time is also dominated by Stage 1. Each Halve step of a set of
size 2j takes O((2j)wl(2j)) time and runs on n/2j sets. In between each Halve
step within a round, the number of sets is divided by two, so the running time is
asymptotically dominated by the first Halve step of each round. The next round
has sets of size 2j+1, but only n/2j+w+2 of them, so the runtime is at most 1

2 that
of the first Halve step. Thus the running time of a round is less than half of that
of the previous one. Since 2j = O(wg(ε,A)) the running time of the Halve step,
and hence the first stage is bounded by O(n·(w ·g(ε,A))w−1 ·l(g(ε,A))+g(ε,A)).
Each Halve step in the second stage corresponds to a single Halve step per
round in the first stage, and does not affect the asymptotics.

We can invoke Theorem 1 along with Lemma 1 and Corollary 1 to com-
pute χ in O(n4) time (notice that w = 4 and l(·) is constant), so g(ε,Qk) =
O( 1

ε log2k 1
εpolylog(log 1

ε )) and g(ε,Rd) = O( 1
ε log2d 1

εpolylog(log 1
ε )). We obtain

the following important corollaries.

Corollary 2. For a set of size n and over the ranges Qk an ε-approximation of
size O( 1

ε log2k 1
εpolylog(log 1

ε )) can be constructed in time O(n 1
ε3 polylog 1

ε ).

Corollary 3. For a set of size n and over the ranges Rd an ε-approximation of
size O( 1

ε log2d 1
εpolylog(log 1

ε )) can be constructed in time O(n 1
ε3 polylog 1

ε ).



Weighted case. These results can be extended to the case where each point
x ∈ X is given a weight µ(x). Now an ε-approximation is a set P ⊂ X and a
weighting µ : X → R such that

max
R∈A

∣∣∣∣µ(P ∩R)
µ(P )

− µ(X ∩R)
µ(X)

∣∣∣∣ ≤ ε,
where µ(P ) =

∑
p∈P µ(p). The weights on P may differ from those on X. A

result from Matoušek [15], invoking the unweighted algorithm several times at
a geometrically decreasing cost, creates a weighted ε-approximation of the same
asymptotic size and with the same asymptotic runtime as for an unweighted
algorithm. This extension is important when we combine ε-approximations rep-
resenting regions of different total measure. For this case we weight each point
relative to the measure it represents.

4 Sampling from Polygonal Domains

We will prove a general theorem for deterministically constructing small ε-
approximations for polygonal domains which will have direct consequences on
polygonal terrains. A key observation of Matoušek [15] is that the union of ε-
approximations of disjoint domains forms an ε-approximation of the union of
the domains. Thus for any geometric domain D we first divide it into pieces for
which we can create ε-approximations. Then we merge all of these point sets into
an ε-approximation for the entire domain. Finally, we use Theorem 1 to reduce
the sample size.

Instead of restricting ourselves to domains which we can divide into cubes of
the form [0, 1]d, thus allowing the use of Lebesgue discrepancy results, we first
expand on a result about lattices and polygons.

Lattices and polygons. For x ∈ R, let �x� represent the fractional part of
x, and for α ∈ Rd−1 let α = (α1, . . . , αd−1). Now given α and m let Pα,m =
{p0, . . . , pm−1} be a set of m lattice points in [0, 1]d defined pi = ( im , �α1i�
, . . . , �αd−1i�). Pα,m is irrational with respect to any polytope in Qβ if for all
βi ∈ β, for all j ≤ d, and for all h ≤ d − 1, the fraction βi,j/αh is irrational.
(Note that βi,j represents the jth element of the vector βi.) Lattices with α
irrational (relative to the face normals) generate low discrepancy sets.

Theorem 2. Let Q ∈ Qβ′ be a fixed convex polytope. Let β, β′ ⊂ Sd−1 be sets of
k and k′ directions, respectively. There is an ε-approximation of (Q,Qβ) of size
O((k + k′) 1

ε logd−1 1
εpolylog(log 1

ε )).

This ε-approximation is realized by a set of lattice points Pα,m∩Q such that
Pα,m is irrational with respect to any polytope in Qβ∪β′ .

Proof. Consider polytope tQh and lattice Pα,m, where the uniform scaling factor
t is treated as an asymptotic quantity. Skriganov’s Theorem 6.1 in [24] claims

max
v∈Rd

D(Pα,m, tQh + v) = O

td−1ρ−θ +
∑
f

Sf (Pα,m, ρ)





where
Sf (Pα,m, ρ) = O(logd−1 ρ log1+τ log ρ)

for τ > 0, as long as Pα,m is irrational with respect to the normal of the face f of
Qh and infinite otherwise, where θ ∈ (0, 1) and ρ can be arbitrarily large. Note
that this is a simplified form yielded by invoking Theorem 3.2 and Theorem 4.5
from [24]. By setting ρθ = td−1,

max
v∈Rd

D(Pα,m, tQh + v) = O(h logd−1 t log1+τ log t). (3)

Now by noting that as t grows, the number of lattice points in tQh grows by
a factor of td, and we can set t = n1/d so (3) implies that D(Pα,m, tQh) =
O(h logd−1 n log1+τ log n) for |Pα,m| = m = n and tQh ⊂ [0, 1]d.

The discrepancy is a sum over the set of h terms, one for each face f , each of
which is small as long as Pα,m is irrational with respect to f ’s normal βf . Hence
this lattice gives low discrepancy for any polytope in the analogous family Qβ
such that Pα,m is irrational with respect to Qβ . Finally we realize that any subset
Q ∩Qk for Q ∈ Qβ′ and Qk ∈ Qβ is a polytope defined by normals from β′ ∪ β
and we then refer to gD(ε,Qβ∪β′) in (1) to bound the size of the ε-approximation
from the given Lebesgue discrepancy.

Remark 1. Skriganov’s result [24] is proved under the whole space model where
the lattice is infinite (tQh is not confined to [0, 1]d), and the relevant error is
the difference between the measure of tQh versus the cardinality |tQh ∩ Pα,m|,
where each p ∈ Pα,m represents 1 unit of measure. Skriganov’s main results in
this model is summarized in equation (3) and only pertains to a fixed polytope
Qh instead of, more generally, a family of polytopes Qβ , as shown in Theorem 2.

Samples for polygonal terrains. Combining the above results and weighted
extension of Theorem 1 implies the following results.

Theorem 3. We can create a weighted ε-approximation of size O((k + k′) 1
ε ·

log2k 1
εpolylog(log 1

ε )) of (D,Qk) in time O((k + k′)n 1
ε4 polylog 1

ε ) for any d-
dimensional domain D which can be decomposed into n d-dimensional convex
k′-oriented polytopes.

Proof. We divide the domain into n k′-oriented polytopes and then approximate
each polytope Qk′ with a point set Pα,m∩Qk′ using Theorem 2. We observe that
the union of these point sets is a weighted ε-approximation of (D,Qk), but is
quite large. Using the weighted extension of Theorem 1 we can reduce the point
sets to the size and in the time stated.

This has applications to terrain domains D defined with a piecewise-linear
base B and height function h : B → R. We decompose the terrain so that each
linear piece of h describes one 3-dimensional polytope, then apply Theorem 3 to
get the following result.

Corollary 4. For terrain domain D with piecewise-linear base B and height
function h : B → R with n linear pieces, we construct a weighted ε-approximation
of (D,Qk) of size O(k 1

ε log4 1
εpolylog(log 1

ε )) in time O(kn 1
ε4 polylog 1

ε ).



5 Sampling from Smooth Terrains

We can create an ε-approximation for a smooth domain (one which cannot be de-
composed into polytopes) in a three stage process. The first stage approximates
any domain with a set of polytopes. The second approximates each polytope
with a point set. The third merges all point sets and uses Theorem 1 to reduce
their size.

This section mainly focuses on the first stage. More formally, we can approx-
imate a non-polygonal domain D with a set of disjoint polygons P such that P
has properties of an ε-approximation.

Lemma 2. If |D \ P | ≤ ε
2 |D| and P ⊆ D then max

R∈A

∣∣∣∣ |R ∩ P ||P |
− |R ∩D|

|D|

∣∣∣∣ ≤ ε.
Proof. No range R ∈ A can have

∣∣∣ |R∩P ||P | −
|R∩D|
|D|

∣∣∣ > ε because if |D| ≥ |P |

(w.l.o.g.), then |R ∩ D| − |D||P | |R ∩ P | ≤ ε|D| and |R ∩ P | |D||P | − |R ∩ D| ≤ ε|D|.
The first part follows from |D|

|P | ≥ 1 and is loose by a factor of 2. For the second
part we can argue

|R ∩ P | |D|
|P |
− |R ∩D| ≤ |R ∩ P | 1

1− ε
2

− |R ∩D| ≤ |R ∩D| 1
1− ε

2

− |R ∩D|

=
ε
2

1− ε
2

|R ∩D| ≤ ε|R ∩D| ≤ ε|D|.

For terrain domains D defined with a baseB and a height function h : B → R,
if B is polygonal we can decompose it into polygonal pieces, otherwise we can
approximate it with constant-size polygonal pieces according to Lemma 2. Then,
similarly, if h is polygonal we can approximate the components invoking Corol-
lary 4; however, if it is smooth, then we can approximate each piece according
to Lemma 2.

We can improve further upon this approach using a stretched version of the
Van der Corput Set and dependent on specific properties of the terrain. Consider
the case where B is a rectangle with diameter dD and h is C2 continuous with
minimum value z−D and where the largest eigenvalue of its Hessian is λD. For such
a terrain D, interesting ranges R2×R are generalized cylinders where the first 2
dimensions are an axis-parallel rectangle and the third dimension is unbounded.
We can state the following result (proved in the full version).

Theorem 4. For a domain D with rectangular base B ⊂ R2 and with a C2-
continuous height function h : B → R we can deterministically create a weighted
ε-approximation of (D,R2×R) of size O

((
λDd

2
D

z−Dε

) (
1
ε log4 1

εpolylog(log 1
ε )
))

. We

reduce the size to O( 1
ε log4 1

εpolylog(log 1
ε )) in time O

((
λDd

2
D

z−D

)
1
ε5 polylog 1

ε

)
.

This generalizes in a straightforward way for B ∈ Rd. Similar results are
possible when B is not rectangular or when B is not even piecewise-linear. The
techniques of Section 4 are necessary if Qk is used instead of R2, and are slower
by a factor O( 1

ε ).



6 Applications

Creating smaller ε-approximations improves several existing algorithms.

Biosurveillance. Let M and B be two points sets in R2. An important anomaly
detection problem for biosurveillance [14, 1] reduces to finding a range (from some
family of ranges such as R2) that maximizes a statistical discrepancy function
on M and B, such as dP (mR, bR) = mR ln mR

bR
+ (1−mR) ln 1−mR

1−bR
, where mR =

|R∩M |/|M | and bR = |R∩B|/|B|. Using the results in this paper we can prove
the following:

Theorem 5. Let |M ∪ B| = n. A range R ∈ R2 such that |dP (mR, bR) −
maxr∈R2 dP (mr, br)| ≤ ε can be deterministically found in O(n 1

ε3 polylog(log 1
ε )+

1
ε4 polylog(log 1

ε )) time.
A range R ∈ R2 such that |dP (mR, bR)−maxr∈R2 dP (mr, br)| ≤ ε+ δ can be

deterministically found in O(n 1
ε3 polylog(log 1

ε ) + 1
δ

1
ε2 polylog(log 1

ε )) time.

This can be generalized to when M and B are terrain domains. This case arises,
for example, when each point is replaced with a probability distribution.

Sensor Networks. Let D be a set of points describing the location of sensors.
If P ⊆ D is an ε-sentinel of (D,A), then for all R ∈ A (1) if |R ∩ D| ≥ ε|D|
then |R ∩ P | ≥ ε 3

4 |P |, and (2) if |R ∩ P | ≥ ε 3
4 |P | then |R ∩D| ≥ ε|D|

2 . Previous
work constructs ε-sentinels for half spaces [21] of size O( 1

ε ) and in expected time
O(nε log n) or for any A with bounded VC-dimension v [11] of size O( 1

ε log 1
ε )

and in time O(n 1
ε2v logv 1

ε ). Noting that an ε
4 -approximation can be used as an

ε-sentinel, we can state the following.

Theorem 6. For a discrete point set D of size n, we can compute ε-sentinels
for (D,Qk) of size O( 1

ε log2k 1
εpolylog(log 1

ε )) in time O(n 1
ε3 polylog(log 1

ε )).
Furthermore, we can create O(nε/ log2k 1

ε ) disjoint sets of ε-sentinels in
O(n 1

ε3 log(nε)polylog(log 1
ε )) total time.

We can extend this result to place an ε-sentinel to cover a polygonal domain
D as well. Details and further results are in the full version.
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