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INTRODUCTION

Geometric data summarization has become an essential tool in both geometric
approximation algorithms and where geometry intersects with big data problems.
In linear or near-linear time, large data sets can be compressed into a summary,
and then more intricate algorithms can be run on the summaries whose results
approximate those of the full data set. Coresets and sketches are the two most
important classes of these summaries.

A coreset is a reduced data set which can be used as proxy for the full data
set; the same algorithm can be run on the coreset as the full data set, and the
result on the coreset approximates that on the full data set. It is often required
or desired that the coreset is a subset of the original data set, but in some cases
this is relaxed. A weighted coreset is one where each point is assigned a weight,
perhaps different than it had in the original set. A weak coreset associated with
a set of queries is one where the error guarantee holds for a query which (nearly)
optimizes some criteria, but not necessarily all queries; a strong coreset provides
error guarantees for all queries.

A sketch is a compressed mapping of the full data set onto a data structure
which is easy to update with new or changed data, and allows certain queries whose
results approximate queries on the full data set. A linear sketch is one where the
mapping is a linear function of each data point, thus making it easy for data to be
added, subtracted, or modified.

These definitions can blend together, and some summaries can be classified as
either or both. The overarching connection is that the summary size will ideally
depend only on the approximation guarantee but not the size of the original data
set, although in some cases logarithmic dependence is acceptable.

We focus on five types of coresets and sketches: shape-fitting (Section 48.1),
density estimation (Section 48.2), high-dimensional vectors (Section 48.3), high-
dimensional point sets / matrices (Section 48.4), and clustering (Section 48.5).
There are many other types of coresets and sketches (e.g., for graphs [AGM12]
or Fourier transforms [IKP14]) which we do not cover due to space limitations or
because they are less geometric.

COMPUTATIONAL MODELS AND PRIMATIVES

Often the challenge is not simply to bound the size of a coreset or sketch as a
function of the error tolerance, but to also do so efficiently and in a restricted
model. So before we discuss the specifics of the summaries, it will be useful to
outline some basic computational models and techniques.

The most natural fit is a streaming model that allows limited space (e.g.,
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the size of the coreset or sketch) and where the algorithm can only make a sin-
gle scan over the data, that is, one can read each data element once. There are
several other relevant models which are beyond the scope of this chapter to de-
scribe precisely. Many of these consider settings where data is distributed across or
streaming into different locations and it is useful to compress or maintain data as
coresets and sketches at each location before communicating only these summaries
to a central coordinator. The mergeable model distills the core step of many
of these distributed models to a single task: given two summaries S1 and S2 of
disjoint data sets, with error bounds ε1 and ε2, the model requires a process to
create a single summary S of all of the data, of size max{size(S1), size(S2)}, and
with error bound ε = max{ε1, ε2}. Specific error bound definitions will vary widely,
and will be discussed subsequently. We will denote any such merge operation as
⊕, and a summary where these size and error constraints can be satisfied is called
mergeable [ACH+13].

A more general merge-reduce framework [CM96, BS80] is also often used,
including within the streaming model. Here we may consider less sophisticated
merge ⊕ operations, such as the union where the size of S is size(S1) + size(S2),
and then a reduce operation to shrink the size of S, but resulting in an increased
error, for instance as ε = ε1 + ε2. Combining these operations together into an
efficient framework can obtain a summary of size g (asymptotically, perhaps up to
log factors) from a dataset of size n as follows. First, arbitrarily divide the data
into n/g subsets, each of size g (assume n/g is a power of 2, otherwise pad the data
with dummy points). Think of organizing these subsets in a binary tree. Then in
log(n/g) rounds until there is one remaining set, perform each of the next two steps.
First, pair up all remaining sets, and merge each pair using an ⊕ operator. Second,
reduce each remaining set to be a summary of size g. If the summary follows the
mergeable model, the reduce step is unnecessary.

Even if the merge or reduce step requires some polynomial mc time to process
m data points, this is only applied to sets of size at most 2g, hence the full runtime
is dominated by the first round as (n/g)·(2g)c = O(n·gc−1). The log factor increase
in error (for that many merge-reduce steps) can be folded into the size g, or in many
cases removed by delaying some reduce steps and careful bookkeeping [CM96].

In a streaming model this framework is applied by mapping data points to the
n/g subsets in the order they arrive, and then always completing as much of the
merge-reduce process as possible given the data seen; e.g., scanning the binary tree
over the initial subsets from left to right. Another log(n/g) space factor is incurred
for those many summaries which can be active at any given time.

48.1 SHAPE FITTING

In this section we will discuss problems where, given an input point set P , the goal
is to find the best fitting shape from some class to P . The two central problems in
this area are the minimum (or smallest) enclosing ball, which has useful solutions in
high dimensions, and the ε-kernel coreset for directional width which approximates
the convex hull but also can be transformed to solve many other problems.
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GLOSSARY

Minimum enclosing ball (MEB): Given a point set P ⊂ Rd, it is the smallest
ball B which contains P .

ε-Approximate minimum enclosing ball problem: Given a point set P ⊂ Rd,
and a parameter ε > 0, the problem is to find a ball B whose radius is no larger
than (1 + ε) times the radius of the MEB of P .

Directional width: Given a point set P ⊂ Rd and a unit vector u ∈ Rd, then the
directional width of P in direction u is ω(P, u) = maxp∈P 〈p, u〉 −minp∈P 〈p, u〉.

ε-Kernel coreset: An ε-kernel coreset of a point set P ∈ Rd is subset Q ⊂ P so
that for all unit vectors u ∈ Rd,

0 ≤ ω(P, u)− ω(Q, u) ≤ εω(P, u).

Functional width: Given a set F = {f1, . . . , fn} of functions each from Rd to R,
the width at a point x ∈ Rd is defined ωF(x) = maxfi∈F fi(x)−minfi∈F fi(x).

ε-Kernel for functional width: Given a set F = {f1, . . . , fn} of functions each
from Rd to R, an ε-kernel coreset is a subset G ⊂ F such that for all x ∈ Rd the
functional width ωG(x) ≥ (1− ε)ωF(x).

Faithful measure: A measure µ is faithful if there exists a constant c, depending
on µ, such that for any point set P ⊂ Rd any ε-kernel coreset Q of P is a coreset
for µ with approximation parameter cε.

Diameter: The diameter of a point set P is maxp,p′∈P ‖p− p′‖.
Width: The width of a point set P is minu∈Rd,‖u‖=1 ω(P, u).

Spherical shell: For a point c ∈ Rd and real numbers 0 ≤ r ≤ R, it is the closed
region σ(c, r, R) = {x ∈ Rd | r ≤ ‖x − c‖ ≤ R} between two concentric spheres
of radius r and R centered at c. Its width is defined R− r.

SMALLEST ENCLOSING BALL CORESET

Given a point set P ⊂ Rd of size n, there exists a ε-coreset for the smallest enclosing
ball problem of size d2/εe that runs in time O(nd/ε+ 1/ε5) [BC03]. Precisely, this
finds a subset S ⊂ P with the smallest enclosing ball B(S) described by center
point c and radius r; it holds that if r is expanded to (1 + ε)r, then the ball with
the same center would contain P .

The algorithm is very simple and iterative: At each step, maintain the center ci
of the current set Si, add to Si the point pi ∈ P farthest from ci, and finally update
Si+1 = Si∪{pi} and ci+1 as the center of the smallest enclosing ball of Si+1. Clark-
son [Cla10] discusses the connection to the Frank-Wolfe [FW56] algorithm, and the
generalizations towards several sparse optimization problems relevant for machine
learning, for instance support vector machines [TKC05], polytope distance [GJ09],
uncertain data [MSF14], and general Riemannian manifolds [AN12].

These algorithms do not work in the streaming model, as they require Ω(1/ε)
passes over the data, but the runtime can be improved to O((d/ε+n/ε2) log(n/ε))
with high probability [CHW12]. Another approach [AS15] maintains a set of
O((1/ε3) log(1/ε)) points in a stream that handles updates in O((d/ε2) log(1/ε))
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time. But it is not a coreset (a true proxy for P ) since in order to handle updates,
it needs to maintain these points as O((1/ε2) log(1/ε)) different groups.

EPSILON-KERNEL CORESET FOR WIDTH

Given point sets P ⊂ Rd of size n, an ε-kernel coreset for directional width ex-
ists of size O(1/ε(d−1)/2) [AHPV04] and can be constructed in O(n + 1/εd−(3/2))
time [Cha06, YAPV08]. These algorithms are quite different from those for MEB,
and the constants have heavy dependence on d (in addition to it being in the expo-
nent of 1/ε). They first estimate the rough shape of the points so that they can be
made fat (so width and diameter are Θ(1)) through an affine transform that does
not change which points form a coreset. Then they carefully choose a small set of
points in the extremal directions.

In the streaming model in Rd, the ε-kernel coreset can be computed using
O((1/ε(d−1)/2)·log(1/ε)) space with O(1+(1/ε(d−3)/2) log(1/ε)) update time, which
can be amortized to O(1) update time [ZZ11]. In R2 this can be reduced to O(1/

√
ε)

space and O(1) update time [AY07].
Similar to ε-kernels for directional width, given a set of n d-variate linear func-

tions F and a parameter ε, then an ε-kernel for functional width can be computed
of size O(1/εd/2) in time O(n+ 1/εd−(1/2)) [AHPV04, Cha06].

Many other measures can be shown to have ε-approximate coresets by showing
they are faithful ; this includes diameter, width, minimum enclosing cylinder, and
minimum enclosing box. Still other problems can be given ε-approximate coresets
by linearizing the inputs so they represent a set of n linear functions in higher
dimensions. Most naturally this works for creating an ε-kernel for the width of
polynomial functions. Similar linearization is possible for a slew of other shape-
fitting problems including the minimum width spherical shell problem, overviewed
nicely in a survey by Agarwal, Har-Peled and Varadarajan [AHPV07].

These coresets can be extended to handle a small number of outliers [HPW04,
AHPY08] or uncertainty in the input [HLPW16]. A few approaches also extend to
high dimensions, such as fitting a k-dimensional subspace [HPV04, BHPR16].

48.2 DENSITY ESTIMATION

Here we consider a point set P ⊂ Rd which represents a discrete density function.
A coreset is then a subset Q ⊂ P such that Q represents a similar density function
to P under a restricted family of ways to measure the density on subsets of the
domain, e.g., defined by a range space.

GLOSSARY

Range space: A range space (P,A) consists of a ground set P and a family of
ranges R of subsets from P . In this chapter we consider ranges that are defined
geometrically, for instance when P is a point set and R is the collection of all
subsets defined by a ball, that is, any subset of P which coincides with P ∩ B
for any ball B.

ε-Net: Given a range space (P,R), it is a subset Q ⊂ P , so for any R ∈ R such
that |R ∩ P | ≥ ε|P |, then R ∩Q 6= ∅.
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ε-Approximation (or ε-sample): Given a range space (P,R), it is a subset

Q ⊂ P , so for all R ∈ R it implies
∣∣∣ |R∩P ||P | −

|R∩Q|
|Q|

∣∣∣ ≤ ε.
VC-dimension: For a range space (P,R) it is the size of the largest subset Y ⊂ P

such that for each subset Z ⊂ Y it holds that Z = Y ∩R for some R ∈ R.

RANDOM SAMPLING BOUNDS

Unlike the shape fitting coresets, these density estimate coresets can be constructed
by simply selecting a large enough random sample of P . The best such size bounds
typically depend on VC-dimension ν [VC71] (or shattering dimension σ), which for
many geometrically defined ranges (e.g., by balls, halfspaces, rectangles) is Θ(d). A
random subset Q ⊂ P of size O((1/ε2)(ν+log(1/δ)) [LLS01] is an ε-approximation
of any range space (P,R) with VC-dimension ν, with probability at least 1 − δ.
A subset Q ⊂ P of size O((ν/ε) log(1/εδ)) [HW87] is an ε-net of any range space
(P,R) with VC-dimension ν, with probability at least 1− δ.

These bounds are of broad interest to learning theory, because they describe
how many samples are sufficient to learn various sorts of classifiers. In machine
learning, it is typical to assume each data point q ∈ Q is drawn iid from some
unknown distribution, and since the above bounds have no dependence on n, we
can replace P by any probability distribution with domain Rd. Consider that
each point in Q has a value from {−,+}, and a separator range (e.g., a halfspace)
should ideally have all + points inside, and all − points outside. Then for an ε-
approximation Q of a range space (P,A), the range R ∈ R which misclassifies the
fewest points on Q, misclassifies at most an ε-fraction of points in P more than
the optimal separator does. An ε-net (which requires far fewer samples) can make
the same claim as long as there exists a separator in A that has zero misclassified
points on P ; it was recently shown [Han16] that a weak coreset for this problem
only requires Θ((1/ε)(ν + log(1/δ))) samples.

The typical ε-approximation bound provides an additive error of ε in esti-
mating |R ∩ P |/|P | with |R ∩ Q|/|Q|. One can achieve a stronger relative (ρ, ε)-
approximation such that

max
R∈R

∣∣∣∣ |R ∩ P ||P |
− |R ∩Q|

|Q|

∣∣∣∣ ≤ εmax

{
ρ,
|R ∩ P |
|P |

}
.

This requires O((1/ρε2)(ν log(1/ρ)+log(1/δ))) samples [LLS01, HPS11] to succeed
with probability at least 1− δ.

DISCREPANCY-BASED RESULTS

Tighter bounds for density estimation coresets arise through discrepancy. The
basic idea is to build a coloring on the ground set χ : X → {−1,+1} to minimize∑
x∈R χ(x) over all ranges (the discrepancy). Then we can plug this into the

merge-reduce framework where merging takes the union and reducing discards the
points colored −1. Chazelle and Matoušek [CM96] showed how slight modifications
of the merge-reduce framework can remove extra log factors in the approximation.

Based on discrepancy results (see Chapters 13 and 47) we can achieve the
following bounds. These assume d ≥ 2 is a fixed constant, and is absorbed in O(·)
notation. For any range space (P,R) with VC-dimension ν (a fixed constant) we
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can construct an ε-approximation of size g = O(1/ε2−ν/(ν+1)) in O(n · gw−1) time.
This is tight for range spaces Hd defined by halfspaces in Rd, where ν = d. For
range spaces Bd defined by balls in Rd, where ν = d + 1 this can be improved
slightly to g = O(1/ε2−ν/(ν+1)

√
log(1/ε)); it is unknown if the log factor can be

removed. For range spaces Td defined by axis-aligned rectangles in Rd, where
ν = 2d, this can be greatly improved to g = O((1/ε) logd+1/2(1/ε)) with the best
lower bound as g = Ω((1/ε) logd−1(1/ε)) for d ≥ 2 [Lar14, MNT15]. These colorings
can be constructed by adapting techniques from Bansal [Ban10, BS13]. Various
generalizations (typically following one of these patterns) can be found in books
by Matoušek [Mat10] and Chazelle [Cha00]. Similar bounds exist in the streaming
and mergeable models, adapting the merge-reduce framework [BCEG07, STZ06,
ACH+13].

Discrepancy based results also exist for constructing ε-nets. However, often the
improvement over the random sampling bounds are not as dramatic. For halfspaces
in R3 and balls in R2 we can construct ε-nets of size O(1/ε) [MSW90, CV07,
PR08]. For axis-aligned rectangles and fat objects we can construct ε-nets of size
O((1/ε) log log(1/ε)) [AES10]. Pach and Tardos [PT13] then showed these results
are tight, and that similar improvements cannot exist in higher dimensions.

GENERALIZATIONS

One can replace the set of ranges R with a family of functions F so that f ∈ F

has range f : Rd → [0, 1], or scaled to other ranges, including [0,∞). For some
F we can interpret this as replacing a binary inclusion map R : Rd → {0, 1} for
R ∈ R, with a continuous one f : Rd → [0, 1] for f ∈ F. A family of functions F is
linked to a range space (P,R) if for every value τ > 0 and every function f ∈ F,
the points {p ∈ P | f(p) ≥ τ} = R ∩ P for some R ∈ R. When F is linked to
(P,R), then an ε-approximation Q for (P,R) also ε-approximates (P,F) [JKPV11]
(see also [HP06, LS10] for similar statements) as

max
f∈F

∣∣∣∣
∑
p∈P f(p)

|P |
−
∑
q∈Q f(q)

|Q|

∣∣∣∣ ≤ ε.
One can also show ε-net type results. An (τ, ε)-net for (P,F) has for all f ∈ F

such that
∑

p∈P (p)

|P | ≥ ε, then there exists some q ∈ Q such at f(q) ≥ τ . Then an

(ε− τ)-net Q for (P,R) is an (τ, ε)-net for (P,F) if they are linked [PZ15].
A concrete example is for centrally-symmetric shift-invariant kernels K (e.g.,

Gaussians K(x, p) = exp(−‖x − p‖2)) then we can set fx(p) = K(x, p). Then
the above ε-approximation corresponds with an approximate kernel density esti-
mate [JKPV11]. Surprisingly, there exist discrepancy-based ε-approximation con-
structions that are smaller for many kernels (including Gaussians) than for the
linked ball range space; for instance in R2 with |Q| = O((1/ε)

√
log(1/ε)) [Phi13].

One can also consider the minimum cost from a set {f1, . . . , fk} ⊂ F of func-
tions [LS10], then the size of the coreset often only increases by a factor k. This
setting will, for instance, be important for k-means clustering when f(p) = ‖x−p‖2
for some center x ∈ Rd [FL11]. And it can be generalized to robust error func-
tions [FS12] and Gaussian mixture models [FFK11].
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QUANTILES SKETCH

Define the rank of v for set X ∈ R as rank(X, v) = |{x ∈ X | x ≤ v}|. A quantiles
sketch S over a data set X of size n allows for queries such that |S(v)−rank(X, v)| ≤
εn for all v ∈ R. This is equivalent to an ε-approximation of a one-dimensional
range space (X, I) where I is defined by half-open intervals of the form (−∞, a].

A ε-approximation coreset of size 1/ε can be found by sorting X and taking
evenly spaced points in that sorted ordering. Streaming sketches are also known;
most famously the Greenwald-Khanna sketch [GK01] which takes O((1/ε) log(εn))
space, where X is size n. Recently, combining this sketch with others [ACH+13,
FO15], Karnin, Lang, and Liberty [KLL16] provided new sketches which require
O((1/ε) log log(1/ε)) space in the streaming model and O((1/ε) log2 log(1/ε)) space
in the mergeable model.

48.3 HIGH-DIMENSIONAL VECTORS

In this section we will consider high-dimensional vectors v = (v1, v2, . . . , vd). When
each vi is a positive integer, we can imagine these as the counts of a labeled set (the
d dimensions); a subset of the set elements or the labels is a coreset approximating
the relative frequencies. Even more generally, a sketch will compactly represent
another vector u which behaves similarly to v under various norms.

GLOSSARY

`p-Norm: For a vector v ∈ Rd the `p norm, for p ∈ [1,∞), is defined ‖v‖p =

(
∑d
i=1 |vi|p)1/p; if clear we use ‖v‖ = ‖v‖2. For p = 0 define ‖v‖0 = |{i | vi 6= 0}|,

the number of nonzero coordinates, and for p =∞ define ‖v‖∞ = maxdi=1 |vi|.
k-Sparse: A vector is k-sparse if ‖v‖0 ≤ k.

Additive `p/`q approximation: A vector v has an additive ε-(`p/`q) approxi-
mation with vector u if ‖v − u‖p ≤ ε‖v‖q.

k-Sparse `p/`q approximation: A vector v has a k-sparse ε-(`p/`q) approxima-
tion with vector u if u is k-sparse and ‖v − u‖p ≤ ε‖v − u‖q.

Frequency count: For a vector v = (v1, v2, . . . vd) the value vi is called the ith
frequency count of v.

Frequency moment: For a vector v = (v1, v2, . . . vd) the value ‖v‖p is called the
pth frequency moment of v.

FREQUENCY APPROXIMATION

There are several types of coresets and sketches for frequency counts. Derived
by ε-approximation and ε-net bounds, we can create the following coresets over
dimensions. Assume v has positive integer coordinates, and each coordinate’s count
vi represents vi distinct objects. Then let S be a random sample of size k of these
objects and u(S) be an approximate vector defined so u(S)i = (‖v‖1/k) · |{s ∈
S | s = i}|. Then with k = O((1/ε2) log(1/δ)) we have ‖v − u(S)‖∞ ≤ ε‖v‖1
(an additive ε-(`∞/`1) approximation) with probability at least 1 − δ. Moreover,



1274 J.M. Phillips

if k = O((1/ε) log(1/εδ)) then for all i such that vi ≥ ε‖v‖1, then u(S)i 6= 0, and
we can then measure the true count to attain a weighted coreset which is again an
additive ε-(`∞/`1) approximation. And in fact, there can be at most 1/ε dimensions
i with vi ≥ ε‖v‖1, so there always exists a weighted coreset of size 1/ε.

Such a weighted coreset for additive ε-(`∞/`1) approximations that is (1/ε)-
sparse can be found deterministically in the streaming model via the Misra-Gries
sketch [MG82] (or other variants [MAA06, DLOM02, KSP03]). This approach
keeps 1/ε counters with associated labels. For a new item, if it matches a label,
the counter is incremented, else if any counter is 0 it takes over that counter/label,
and otherwise, (perhaps unintuitively) all counters are decremented.

The count-min sketch [CM05] also provides an additive ε-(`∞/`1) approxi-
mation with space O((1/ε) log(1/δ)) and is successful with probability 1 − δ. A
count-sketch [CCFC04] provides an additive ε-(`∞/`2) approximation with space
O((1/ε2) log(1/δ)), and is successful with probability at least 1− δ. Both of these
linear sketches operate by using O(log 1/δ) hash functions, each mapping [d] to one
of O(1/ε) or O(1/ε2) counters. The counters are incremented or decremented with
the value vi. Then an estimate for vi can be recovered by examining all cells where
i hashes; the effect of other dimensions which hash there can be shown bounded.

Frequency moments. Another common task is to approximate the frequency
moments ‖v‖p. For p = 1, this is the count and can be done exactly in a stream.
The AMS Sketch [AMS99] maintains a sketch of size O((1/ε2) log(1/δ)) that can

derive a value F̂2 so that |‖v‖2 − F̂2| ≤ ε‖v‖2 with probability at least 1− δ.
The FM Sketch [FM85] (and its extensions [AMS99, DF03]) show how to create

a sketch of size O((1/ε2) log(1/δ)) which can derive an estimate F̂0 so that |‖v‖0−
F̂0| ≤ ε‖v‖1 with probability at least 1−δ. This works when vi are positive counts,
and those counts are incremented one at a time in a stream. Usually sketches and
coresets have implicit assumptions that a “word” can fit log n bits where the stream
is of size n, and is sufficient for each counter. Interestingly and in contrast, these
`0 sketches operate with bits, and only have a hidden log log n factor for bits.

k-sparse tail approximation. Some sketches can achieve k-sparse approxima-
tions (which are akin to coresets of size k) and have stronger error bounds that
depend only on the “tail” of the matrix; this is the class of k-sparse ε-(`p/`q)
approximations. See the survey by Gilbert and Indyk for more details [GI10].

These bounds are typically achieved by increasing the sketch size by a factor k,
and then the k-sparse vector is the top k of those elements. The main recurring ar-
gument is roughly as follows: If you maintain the top 1/ε counters, then the largest
counter not maintained is of size at most ε‖v‖. Similarly, if you first remove the top
k counters (a set K = {i1, i2, . . . , ik} ⊂ [d], let their collective norm be ‖vK‖), then
maintain 1/ε more, the largest not-maintained counter is at most ε(‖v‖ − ‖vK‖).
The goal is then to sketch a k-sparse vector which approximates vK ; for instance
the Misra-Gries Sketch [MG82] and Count-Min sketch [CM05] achieve k-sparse ε-
(`∞/`1)-approximations with O(k/ε) counters, and the Count sketch [CCFC04]
achieves k-sparse ε-(`∞/`2)-approximations with O(k2/ε2) counters [BCIS10].

48.4 HIGH-DIMENSIONAL POINT SETS (MATRICES)

Matrix sketching has gained a lot of interest due to its close connection to scalability
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issues in machine learning and data mining. The goal is often to replace a matrix
with a small space and low-rank approximation. However, given a n×d matrix A, it
can also be imagined as n points each in Rd, and the span of a rank-k approximation
is a k-dimensional subspace that approximately includes all of the points.

Many of the techniques build on approaches from vector sketching, and again,
many of the sketches are naturally interpretable as weighted coresets. Sometimes
it is natural to represent the result as a reduced set of rows in a ` × d matrix B.
Other times it is more natural to consider the dimensionality reduction problem
where the goal is an n × c matrix, and sometimes you do both! But since these
problems are typically phrased in terms of matrices, the difference comes down to
simply transposing the input matrix. We will write all results as approximating an
n× d matrix A using fewer rows, for instance, with an `× d matrix B.

Notoriously this problem can be solved optimally using the numerical linear
algebra technique, the singular value decomposition, in O(nd2) time. The challenges
are then to compute this more efficiently in streaming and other related settings.

We will describe three basic approaches (row sampling, random projections,
and iterative SVD variants), and then some extensions and applications [FT15].
The first two approaches are mainly randomized, and we will describe results with
constant probability, and for the most part these bounds can be made to succeed
with any probability 1− δ by increasing the size by a factor log(1/δ).

GLOSSARY

Matrix rank: The rank of an n × d matrix A, denoted rank(A), is the smallest
k such that all rows (or columns) lie in a k-dimensional subspace of Rd (or Rn).

Singular value decomposition: Given an n × d matrix A, the singular value
decomposition is a product UΣV T where U and V are orthogonal, and Σ is
diagonal. U is n×n, and V is d×d, and Σ = diag(σ1, σ2, . . . , σmin{n,d}) (padded
with either n− d rows or d−n columns of all 0s, so Σ is n× d) where σ1 ≥ σ2 ≥
. . . ≥ σmin{n,d} ≥ 0, and σi = 0 for all i > rank(A).

The ith column of U (resp. column of V ) is called the ith left (resp. right)
singular vector ; and σi is the ith singular value.

Spectral norm: The spectral norm of matrixA is denoted ‖A‖2 = max
x6=0
‖Ax‖/‖x‖.

Frobenius norm: The Frobenius norm of a matrix A is ‖A‖F =
√∑n

i=1 ‖ai‖2
where ai is the ith row of A.

Low rank approximation of a matrix: The best rank k approximation of a
matrix A is denoted [A]k. Let Σk be the matrix Σ (the singular values from the
SVD of A) where the singular values σi are set to 0 for i > k. Then [A]k =
UΣkV

T . Note we can also ignore the columns of U and V after k; these are
implicitly set to 0 by multiplication with σi = 0. The n × d matrix [A]k is
optimal in that over all rank k matrices B it minimizes ‖A−B‖2 and ‖A−B‖F .

Projection: For a subspace F ⊂ Rd and point x ∈ Rd, define the projection
πF (x) = arg miny∈F ‖x − y‖. For an n × d matrix A, then πF (A) defines the
n× d matrix where each row is individually projected on to F .

ROW SUBSET SELECTION
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The first approach towards these matrix sketches is to choose a careful subset of
the rows (note: the literature in this area usually discusses selecting columns).
An early analysis of these techniques considered sampling ` = O((1/ε2)k log k)
rows proportional to their squared norm as ` × d matrix B, and showed [FKV04,
DFK+04, DKM06] one could describe a rank-k matrix P = [πB(A)]k so that

‖A− P‖2F ≤ ‖A− [A]k‖2F + ε‖A‖2F and ‖A− P‖22 ≤ ‖A− [A]k‖22 + ε‖A‖2F .

This result can be extended for sampling columns in addition to rows.
This bound was then improved by sampling proportional to the leverage scores;

If Uk is the n× k matrix of the first k left singular vectors of A, then the leverage
score of row i is ‖Uk(i)‖2, the norm of the ith row of Uk. In this caseO((1/ε2)k log k)
rows achieve a relative error bound [DMM08]

‖A− πB(A)‖F ≤ (1 + ε)‖A− [A]k‖2F .

These relative error results can be extended to sample rows and columns, generating
a so-called CUR decomposition of A. Similar relative error bounds can be achieved
through volume sampling [DV06]. Computing these leverage scores exactly can be
as slow as the SVD; instead one can approximate the leverage scores [DMI+12,
CLM+15], for instance in a stream in O((kd/ε2) log4 n) bits of space [DMI+12].

Better algorithms exist outside the streaming model [FVR16]. These can, for
instance, achieve the strong relative error bounds with only O(k/ε) rows (and
O(k/ε) columns) and only require time O(nnz(A) log n + npoly(log n, k, 1/ε)) time
where nnz(A) is the number of nonzero entries in A [BDMI14, BW17]. Or Batson,
Spielman and Srivastava [BSS14, Sri10, Nao12] showed that O(d/ε2) reweighted
rows are sufficient and necessary to achieve bounds as below in (48.4.1).

RANDOM PROJECTIONS

The second approach to matrix sketching is based on the Johnson-Lindenstrauss
(JL) Lemma [JL84], which says that projecting any vector x (independent of its
dimension, for which it will be useful here to denote as n) onto a random subspace
F of dimension ` = O(1/ε2) preserves, with constant probability, its norm up to
(1 + ε) relative error, after rescaling: (1 − ε)‖x‖ ≤

√
n/`‖πF (x)‖ ≤ (1 + ε)‖x‖.

Follow-up work has shown that the projection operator πF can be realized as an
`×n matrix S so that (

√
n/`)πF (x) = Sx. And in particular, we can fill the entries

of S with iid Gaussian random variables [DG03], uniform {−1,+1} or {−1, 0,+1}
random variables [Ach03], or any sub-Gaussian random variable [Mat08], rescaled;
see Chapter 8 for more details. Alternatively, we can make S all 0s except for
one uniform {−1,+1} random variable in each column of S [CW17]. This latter
construction essentially “hashes” each element of A to one of the elements in πF (x)
(see also a variant [NN13]); basically an extension of the count-sketch [CCFC04].

To apply these results to matrix sketching, we simply apply the sketch matrix
S to A instead of just a single “dimension” of A. Then B = SA is our resulting
`×d matrix. However, unlike in typical uses of the JL Lemma on a point set of size
m, where it can be shown to preserve all distances using ` = O((1/ε2) logm) target
dimensions, we will strive to preserve the norm over all d dimensions. As such
we use ` = O(d/ε2) for iid JL results [Sar06], or ` = O(d2/ε2) for hashing-based
approaches [CW17, NN13]. As was first observed by Sarlos [Sar06] this allows one
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to create an oblivious subspace embedding so that for all x ∈ Rd guarantees

(1− ε)‖Ax‖22 ≤ ‖Bx‖22 ≤ (1 + ε)‖Ax‖22. (48.4.1)

The obliviousness of this linear projection matrix S (it is created independent of A)
is very powerful. It means this result can not only be performed in the update-only
streaming model, but also one that allows merges, deletions, or arbitrary updates
to an individual entry in a matrix. Moreover, given a matrix A with only nnz(A)
nonzero entries, it can be applied in roughly O(nnz(A)) time [CW17, NN13]. It also
implies bounds for matrix multiplication, and as we will discuss, linear regression.

FREQUENT DIRECTIONS

This third class of matrix sketching algorithms tries to more directly replicate those
properties of the SVD, and can be deterministic. So why not just use the SVD?
These methods, while approximate, are faster than SVD, and work in the streaming
and mergeable models.

The Frequent Directions algorithm [Lib13, GLPW16] essentially processes each
row (or O(`) rows) of A at a time, always maintaining the best rank-` approximation
as the sketch. But this can suffer from data drift, so crucially after each such update,
it also shrinks all squared singular values of [B]` by s2` ; this ensures that the additive
error is never more than ε‖A‖2F , precisely as in the Misra-Gries [MG82] sketch for
frequency approximation. Setting ` = k + 1/ε and ` = k + k/ε, respectively, the
following bounds have been shown [GP14, GLPW16] for any unit vector x:

0 ≤ ‖Ax‖2−‖Bx‖2 ≤ ε‖A−[A]k‖2F and ‖A−π[B]k(A)‖2F ≤ (1+ε)‖A−[A]k‖2F .

Operating in a batch to process Θ(`) rows at a time, this takes O(nd`) time. A
similar approach by Feldman et al. [FSS13] provides a more general bound, and
will be discussed in the context of subspace clustering below.

LINEAR REGRESSION AND ROBUST VARIANTS

The regression problem takes as input again an n× d matrix A and also an n× w
matrix T (most commonly w = 1 so T is a vector); the goal is to find the d × w
matrix X∗ = arg minX ‖AX−T‖F . One can create a coreset of ` rows (or weighted

linear combination of rows): the `×d matrix Â and `×w matrix T̂ imply a matrix

X̂ = arg minX ‖ÂX − T̂‖2 that satisfies

(1− ε)‖AX∗ − T‖2F ≤ ‖AX̂ − T‖2F ≤ (1 + ε)‖AX∗ − T‖2F .

Using the random projection techniques described above, one can sketch Â = SA
and T̂ = SA with ` = O(d2/ε2) for hashing approaches or ` = O(d/ε2) for iid
approaches. Moreover, Sarlos [Sar06] observed that for the w = 1 case, since only
a single direction (the optimal one) is required to be preserved (see weak coresets
below), one can also use just ` = O(d2/ε) rows. Using row-sampling, one can
deterministically select ` = O(d/ε2) rows [BDMI13]. The above works also provide
bounds for approximating the multiple-regression spectral norm ‖AX∗ − T‖2.

Mainly considering the single-regression problem when w = 1 (in this case
spectral and Frobenius norms bounds are equivalent p = 2 norms), there also exist
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bounds for approximating ‖AX − T‖p for p ∈ [1,∞) using random projection
approaches and row sampling [CDMI+13, Woo14]. The main idea is to replace iid
Gaussian random variables which are 2-stable with iid p-stable random variables.
These results are improved using max-norm stability results [WZ13] embedding
into `∞, or for other robust error functions like the Huber loss [CW15b, CW15a].

48.5 CLUSTERING

An assignment-based clustering of a data set X ⊂ Rd is defined by a set of k centers
C ⊂ Rd and a function φC : Rd → C, so φC(x) = arg minc∈C ‖x− c‖. The function
φC maps to the closest center in C, and it assigns each point x ∈ X to a center and
an associated cluster. It will be useful to consider a weight w : X → R+. Then a
clustering is evaluated by a cost function

costp(X,w,C) =
∑
x∈X

w(x) · ‖x− φC(x)‖p.

For uniform weights (i.e., w(x) = 1/|X|, which we assume as default), then we
simply write costp(X,C). We also define cost∞(X,C) = maxx∈X ‖x − φC(x)‖.
These techniques extend to when the centers of the clusters are not just points, but
can also be higher-dimensional subspaces.

GLOSSARY

k-Means / k-median / k-center clustering problem: Given a set X ⊂ Rd,
find a point set C of size k that minimizes cost2(X,C) (respectively, cost1(X,C)
and cost∞(X,C)).

(k, ε)-Coreset for k-means / k-median / k-center: Given a point set X ⊂
Rd, then a subset S ⊂ X is a (k, ε)-coreset for k-means (respectively, k-median
and k-center) if for all center sets C of size k and parameter p = 2 (respectively
p = 1 and p =∞) that

(1− ε)costp(X,C) ≤ costp(S,C) ≤ (1 + ε)costp(X,C).

Projective distance: Consider a set C = (C1, C2, . . . , Ck) of k affine subspaces
of dimension j in Rd, and a power p ∈ [1,∞). Then for a point x ∈ Rd the
projective distance is defined as distp(C, x) = minCi∈C ‖x − πCi

(x)‖p, recalling
that πCi

(x) = arg miny∈Ci
‖x− y‖.

Projective (k, j, p)-clustering problem: Given a set X ⊂ Rd, find a set C of k
j-dimensional affine subspaces that minimizes costp(X,C) =

∑
x∈X distp(C, x).

(k, j, ε)-Coreset for projective (k, j, p)-clustering: Given a point set X ⊂ Rd,
then a subset S ⊂ X, a weight function w : S → R+, and a constant γ, is
a (k, j, ε)-coreset for projective (k, j, p)-clustering if for all j-dimensional center
sets C of size k that

(1− ε)costp(X,C) ≤ costp(X,w,C) + γ ≤ (1 + ε)costp(X,C).

In many cases the constant γ may not be needed; it will be 0 unless stated.
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Strong coreset: Given a point set X ⊂ Rd, it is a subset S ⊂ X that approxi-
mates the distance to any k-tuple of j-flats up to a multiplicative (1 + ε) factor.

Weak coreset: Given a point set X ⊂ Rd, it is a subset S ⊂ X such that the cost
of the optimal solution (or one close to the optimal solution) of (k, j)-clustering
on S, approximates the optimal solution on X up to a (1+ε) factor. So a strong
coreset is also a weak coreset, but not the other way around.

k-MEANS AND k-MEDIAN CLUSTERING CORESETS

(k, ε)-Coresets for k-means and for k-median are closely related. The best bounds
on the size of these coresets are independent of n and sometimes also d, the number
and dimension of points in the original point set X. Feldman and Langberg [FL11]
showed how to construct a strong (k, ε)-coreset for k-median and k-means clustering
of size O(dk/ε2). They also show how to construct a weak (k, ε)-coreset [FMS07]
of size O(k log(1/ε)/ε3). These bounds can generalize for any costp for p ≥ 1.
However, note that for any fixed X and C that costp(X,C) > costp′(X,C) for
p > p′, hence these bounds are not meaningful for the p =∞ special case associated
with the k-center problem. Using the merge-reduce framework, the weak coreset
constructions work in the streaming model with O((k/ε3) log(1/ε) log4 n) space.

Interestingly, in contrast to earlier work on these problems [HPK07, HPM04,
Che09] which applied various forms of geometric discretization of Rd, the above
results make an explicit connection with VC-dimension-type results and density
approximation [LS10, VX12]. The idea is each point x ∈ X is associated with a
function fx(·) = costp(x, ·), and the total cost costp(X, ·) is a sum of these. Then
the mapping of these functions onto k centers results in a generalized notion of
dimension, similar to the VC-dimension of a dual range space, with dimension
O(kd), and then standard sampling arguments can be applied.

k-CENTER CLUSTERING CORESETS

The k-center clustering problem is harder than the k-means and k-median ones. It
is NP-hard to find a set of centers C̃ such that cost∞(X, C̃) ≤ (2− η)cost∞(X,C∗)
where C∗ is the optimal center set and for any η > 0 [Hoc97]. Yet, famously the
Gonzalez algorithm [Gon85], which always greedily chooses the point farthest away

from any of the points already chosen, finds a set Ĉ of size k, so cost∞(X, Ĉ) ≤
2 · cost∞(X,C∗). This set Ĉ, plus the farthest point from any of these points (i.e.,
run the algorithm for k+ 1 steps instead of k) is a (k, 1) coreset (yielding the above
stated 2 approximation) of size k + 1. In a streaming setting, McCutchen and
Khuller [MK08] describe a O(k log k · (1/ε) log(1/ε)) space algorithm that provides
(2+ε) approximation for the k-center clustering problem, and although not stated,
can be interpreted as a streaming (k, 1 + ε)-coreset for k-center clustering.

To get a (k, ε)-coreset, in low dimensions, one can use the result of the Gonzalez
algorithm to define a grid of size O(k/εd), keeping one point from each grid cell as
a coreset of the same size [AP02], in time O(n+k/εd) [HP04a]. In high dimensions
one can run O(kO(k/ε)) sequences of k parallel MEB algorithms to find a k-center
coreset of size O(k/ε) in O(dnkO(k/ε)) time [BC08].

PROJECTIVE CLUSTERING CORESETS
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Projective clustering seeks to find a set of k subspaces of dimension j which ap-
proximate a large, high-dimensional data set. This can be seen as the combination
of the subspace (matrix) approximations and clustering coresets.

Perhaps surprisingly, not all shape-fitting problems admit coresets, and in par-
ticular, subspace clustering ones pose a problem. Har-Peled showed [HP04b] that
no coreset exists for the 2-line-center clustering problem of size sublinear in the
dataset. This result can be interpreted so that for j = 1 (and extended to j = 2),
k = 2, and d = 3, there is no coreset for the projective (k, j)-center clustering
problem sublinear in n. Moreover, a result of Meggido and Tamir [MT83] can be
interpreted to say for j ≥ 2 and k > log n, the solution cannot be approximated in
polynomial time, for any approximation factor, unless P = NP .

This motivates the study of bicriteria approximations, where the solution to
the projective (j, k, p)-clustering problem can be approximated using a solution
for larger values of j and/or k. Feldman and Langberg [FL11] describe a strong
coreset for projective (j, k)-clustering of size O(djk/ε2) or a weak coreset of size
O(kj2 log(1/ε)/ε3), which approximated k subspaces of dimension j usingO(k log n)
subspaces of dimensions j. This technique yields stronger bounds in the j = 0 and
p = ∞ case (the k-center clustering problem) where a set of O(k log n) cluster
centers can be shown to achieve error no more than the optimal set of k centers:
a (k, 0)-coreset for k-center clustering with an extra O(log n) factor in the num-
ber of centers. Other tradeoffs are also described in their paper where the size or
approximation factor varies as the required number of subspaces changes. These
approaches work in the streaming model with an extra factor log4 n in space.

Feldman, Schmidt, and Sohler [FSS13] consider the specific case of cost2 and
crucially make use of a nonzero γ value in the definition of a (k, j, ε)-coreset for
projective (k, j, 2)-clustering. They show strong coresets of size O(j/ε) for k = 1
(subspace approximation), of size O(k2/ε4) for j = 0 (k-means clustering), of size
poly(2k, log n, 1/ε) if j = 1 (k-lines clustering), and under the assumption that the
coordinates of all points are integers between 1 and nO(1), of size poly(2kj , 1/ε) if
j, k > 1. These results are improved slightly in efficiency [CEM+15], and these
constructions also extend to the streaming model with extra log n factors in space.

48.6 SOURCES AND RELATED MATERIAL

SURVEYS

[AHPV07]: A slightly dated, but excellent survey on coresets in geometry.

[HP11]: Book on geometric approximation that covers many of the above topics,
for instance Chapter 5 (ε-approximations and ε-nets), Chapter 19 (dimensionality
reduction), and Chapter 23 (ε-kernel coresets).

[Mut05]: On streaming, including history, puzzles, applications, and sketching.

[CGHJ11]: Nice introduction to sketching and its variations.

[GI10]: Survey on k-sparse ε-(`p/`q) approximations.

[Mah11, Woo14]: Surveys of randomized algorithms for matrix sketching.
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RELATED CHAPTERS

Chapter 8: Low-distortion embeddings of finite metric spaces
Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 47: Epsilon-approximations and epsilon-nets
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[MSW90] J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with a little: Small ε-nets

for disks and halfspaces. In Proc. 6th Sympos. Comput. Geom., pages 16–22, ACM

arXiv:1408.1376v2


1286 J.M. Phillips

Press, 1990. Corrected version available at http://kam.mff.cuni.cz/~matousek/

enets3.ps.gz, 2000.

[MT83] N. Megiddo and A. Tamir. Finding least-distance lines. SIAM J. Algebraic Discrete

Methods, 4:207–211, 1983.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends

Theor. Comp. Sci., 1:117–236, 2005.

[Nao12] A. Naor. Sparse quadratic forms and their geometric applications (after Batson,

Spielman and Srivastava). Asterisque, 348:189–217, 2012.

[NN13] J. Nelson and H.L. Nguyen. OSNAP: Faster numerical linear algebra algorithms

via sparser subspace embeddings. In Proc. 54th IEEE Sympos. Found. Comp. Sci.,

pages 117–126, 2013.

[Phi13] J.M. Phillips. ε-Samples for kernels. In Proc. 24th ACM-SIAM Sympos. Discrete

Algorithms, pages 1622–1632, 2013.

[PR08] E. Pyrga and S. Ray. New existence proofs for ε-nets. In Proc. 24th Sympos. Comput.

Geom., pages 199–207, ACM Press, 2008.

[PT13] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. J. Amer.

Math. Soc., 26:645–658, 2013.

[PZ15] J.M. Phillips and Y. Zheng. Subsampling in smooth range spaces. In Proc. 26th

Conf. Algorithmic Learning Theory, vol. 9355 of LNCS, pages 224–238, Springer,

Berlin, 2015.

[Sar06] T. Sarlós. Improved approximation algorithms for large matrices via random pro-

jections. In Proc. 47th IEEE Sympos. Found. Comp. Sci., pages 143–152, 2006.

[Sri10] N. Srivastava. Spectral Sparsification and Restricted Invertibility. PhD thesis, Yale

University, New Haven, 2010.
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