
An Efficient Algorithm for 2D Euclidean 2-Center with

Outliers∗

Pankaj K. Agarwal † Jeff M. Phillips ‡

Abstract

For a set P of n points in R2, the Euclidean 2-center problem computes a pair of
congruent disks of the minimal radius that cover P . We extend this to the (2, k)-center
problem where we compute the minimal radius pair of congruent disks to cover n − k
points of P . We present a randomized algorithm with O(nk7 log3 n) expected running
time for the (2, k)-center problem. We also study the (p, k)-center problem in R2 under
the `∞-metric for p = {4, 5}. We propose an kO(1)n log n algorithm for computing a `∞
(4, k)-center and an kO(1)n log5 n algorithm for computing a `∞ (5, k)-center.

1 Introduction

Let P be a set of n points in R2. For a pair of integers 0 ≤ k ≤ n and p ≥ 1, a family of p
congruent disks is called a (p, k)-center if the disks cover at least n − k points of P ; (p, 0)-
center is the standard p-center. The Euclidean (p, k)-center problems asks for computing a
(p, k)-center of P of the smallest radius. In this paper we study the (2, k)-center problem. We
also study the (p, k)-center problem under the `∞-metric for small values of p and k. Here we
wish to cover all but k points of P by p congruent axis-aligned squares of the smallest side
length. Our goal is to develop algorithms whose running time is n(k log n)O(1).

Related work. There has been extensive work on the p-center problem in algorithms and
operations research communities [3, 13, 20, 8]. If p is part of the input, the problem is NP-
hard [24] even for the Euclidean case in R2. The Euclidean 1-center problem is known to
be LP-type [22], and therefore can be solved in linear time for any fixed dimension. The
Euclidean 2-center problem is not LP-type. Agarwal and Sharir [2] proposed an O(n2 log3 n)
time algorithm for the 2-center problem. The running time was improved to O(n logO(1) n) by
Sharir [26]. The exponent of the log n factor was subsequently improved in [14, 5]. The best
known deterministic algorithm takesO(n log2 n log2 log n) time in the worst case, and the best
known randomized algorithm takes O(n log2 n) expected time.

There is little work on the (p, k)-center problem. Using a framework described by Ma-
toušek [21], LP-type problems, with k violations and basis size 3, can be solved inO(n log k+
k3nε) time, for any ε > 0. This is improved by Chan [6] to O(nβ(n) log n + k2nε) expected
time, where β(·) is a slow-growing inverse-Ackermann-like function and ε > 0. The (1, k)-
center problem is LP-type with basis size 3, so these bounds apply. Matoušek [21] also gives a
∗This work is supported by NSF under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO

grants W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01, by a DOE grant
OEGP200A070505, and by a grant from the U.S. Israel Binational Science Foundation.
†Department of Computer Science, Duke University, Durham, NC 27708: pankaj@cs.duke.edu
‡Department of Computer Science, Duke University, Durham, NC 27708: jeffp@cs.duke.edu

ar
X

iv
:0

80
6.

43
26

v2
 [

cs
.C

G
]

 1
3

Se
p

20
08

more general results for LP-type problems with k violations and with basis size c that runs in
O(nkc) time, if it is a feasible case where a solution with no violations exists. In the infeasible
case, no solution exists without violations and the algorithm runs inO(nkc+1) time. In fact, he
shows in the feasible (resp. infeasible) case that there are O(kc) (resp. O(kc+1)) basis with at
most k violations and his algorithm visits all of them by a path of lengthO(kc) (resp. O(kc+1))
where consecutive basis in the path differ by inserting or deleting one constraint.

The p-center problem under `∞-metric is dramatically simpler. Sharir and Welzl [27] show
how to compute the `∞ p-center in near-linear time for p ≤ 5. In fact, they show that the
rectilinear 2- and 3-center problems are LP-type problems and can be solved in O(n) time.
Also, they show the 1-dimensional version of the problem is an LP-type problem for any p,
with combinatorial dimensionO(p). Thus applying Matoušek’s framework [21], the `∞ (p, k)-
center in R2 for p ≤ 3, can be found in O(kO(1)n) time and in O(kO(p)n), for any p, if the
points lie in R1.

Our results. Our main result is a randomized algorithm for the Euclidean (2, k)-center prob-
lem in R2 whose expected running time isO(nk7 log3 n). We follow the general framework of
Sharir and subsequent improvements by Eppstein. We first prove, in Section 2, a few structural
properties of levels in an arrangement of unit disks, which are of independent interest.

As in [26, 14], our solution breaks the (2, k)-center problem into two cases depending on
the distance between the centers of the optimal disks; (i) the centers are further apart than the
optimal radius, and (ii) they are closer than their radius. The first subproblem, which we refer
to as the well-separated case and describe in Section 3, takes O(k6n log3 n) time in the worst
case and uses parametric search [23]. The second subproblem, which we refer to as the nearly
concentric case and describe in Section 4, takes O(k7n log3 n) expected time. Thus we solve
the (2, k)-center problem in O(k7n log3 n) expected time. We can solve the nearly concentric
case and hence the (2, k)-center problem in O(k7n1+δ) deterministic time, for any δ > 0. We
present near-linear algorithms for the `∞ (p, k)-center in R2 for p = 4, 5. The `∞ (4, k)-center
problem takes O(kO(1)n log n) time, and the `∞ (5, k)-center problem takesO(kO(1)n log5 n)
time. We have not made any attempt to minimize the exponent of k. We believe that it can be
improved by a more careful analysis.

2 Arrangement of Unit Disks

Let D = {D1, . . . , Dn} be a set of n unit disks in R2. Let A(D) be the arrangement of D.1

A(D) consists of O(n2) vertices, edges, and faces. For a subset R ⊆ D, let I(R) =
⋂
D∈RD

denote the intersection of disks in R. Each disk in R contributes at most one edge in I(R).
We refer to I(R) as a unit-disk polygon and a connected portion of ∂I(R) as a unit-disk curve.
We introduce the notion of a level in A(D), prove a few structural properties of levels, and
describe a procedure that will be useful for our overall algorithm.

1The arrangement of D is the planar decomposition induced by D; its vertices are the intersection points of
boundaries of two disks, its edges are the maximal portions of disk boundaries that do not contain a vertex, and its
faces are the maximal connected regions of the plane that do not intersect the boundary of any disk.

2

1 12 2

12 2 1

(a) (b) (c)

Figure 1: (a) A(D); shaded region is A≤1(D); filled (resp. hollow) vertices are convex (resp. concave)
vertices of A≤1(D); covering of A≤1(D) edges by six unit-disk curves. (b) A(Γ+); shaded region is
A≤1(Γ+); and the covering of A≤1(Γ+) edges by two concave chains. (c) A(Γ−); shaded region is
A≤1(Γ−); and the covering of A≤1(Γ−) edges by two convex chains.

Levels and their structural properties. For a point x ∈ R2, the level of x with respect to
D, denoted by λ(x,D), is the number of disks in D that do not contain x. (Our definition of
level is different from the more common definition in which it is defined as the number of disks
whose interiors contain x.) All points lying on an edge or face φ of A(D) have the same level,
which we denote by λ(φ). For k ≤ n, let Ak(D) (resp. A≤k(D)) denote the set of points in
R2 whose level is k (resp. at most k); see Figure 1. By definition, A0(D) = A≤0(D) = I(D).

The boundary of A≤k(D) is composed of the edges of A(D). Let v ∈ ∂D1 ∩ ∂D2, for
D1, D2 ∈ D, be a vertex of ∂A≤k(D). We call v convex (resp. concave) if A≤k(D) lies in
D1∩D2 (resp. D1∪D2) in a sufficiently small neighborhood of v; see Figure 1(a). ∂A≤0(D) is
composed of convex vertices. We define the complexity of A≤k(D) to be the number of edges
of A(D) whose levels are at most k. Since the complexity of A≤0(D) is n, the following
lemma follows from the result by Clarkson and Shor [10] (see also Sharir [25] and Chan [7]).

Lemma 2.1. [10] For k ≥ 0, the complexity of A≤k(D) is O(nk).

Remark. The argument by Clarkson and Shor can also be used to prove that A≤k(D) has
O(k2) connected components and that it has O(k2) local minima in (+y)-direction. See also
[9, 21]. These bounds are tight in the worst case; see Figure 2.

It is well known that the edges in the≤k-level of a line arrangement can be covered by k+1
concave chains [18], as used in [12, 6]. We prove a similar result for A≤k(D); it can be covered
by O(k) unit-disk curves.

For a diskDi, let γ+
i (resp. γ−i) denote the set of points that lie in or below (resp. above)Di;

∂γ+
i consists of the upper semicircle of ∂Di plus two vertical downward rays emanating from

the left and right endpoints of the semicircle — we refer to these rays as left and right rays.
The curve ∂γ−i has a similar structure. See Figures 1(b) and (c). Set Γ+ = {γ+

i | 1 ≤ i ≤ n}
and Γ− = {γ−i | 1 ≤ i ≤ n}. Assuming that the x-coordinates of the centers of all disks in D

are distinct, each pair of curves ∂γ+
i , ∂γ

+
j intersect in at most one point. (If we assume that the

left and right rays are not vertical but have very large positive and negative slopes, respectively,
then each pair of boundary curves intersects in exactly one point.) We define the level of a
point with respect to Γ+, Γ−, or Γ+ ∪Γ− in the same way as with respect to D. A point lies in
a disk Di if and only if it lies in both γ+

i and γ−i , so we obtain the following inequalities:

max{λ(x,Γ+), λ(x,Γ−)} ≤ λ(x,D). (2.1)

3

λ(x,D) ≤ λ(x,Γ+ ∪ Γ−) ≤ 2λ(x,D). (2.2)

We cover the edges of A≤k(Γ+) by k+1 concave chains as follows. The level of the (k+1)st
rightmost left ray is at most k at y = −∞. Let ρi be such a ray, belonging to γ+

i . We trace
∂γ+

i , beginning from the point at y = −∞ on ρi, as long as ∂γ+
i remains in A≤k(Γ+). We

stop when we have reached a vertex v ∈ A≤k(Γ+) at which it leaves A≤k(Γ+); v is a convex
vertex on A≤k(Γ+). Suppose v = ∂γ+

i ∩ ∂γ
+
j . Then ∂A≤k(Γ+) follows ∂γ+

j immediately
to the right of v, so we switch to ∂γ+

j and repeat the same process. It can be checked that we
finally reach y = −∞ on a right ray. Since we always switch the curve on a convex vertex,
the chain Λ+

i we trace is a concave chain composed of a left ray, followed by a unit-disk curve
ξ+i , and then followed by a right ray. Let Λ+

0 ,Λ
+
1 , . . . ,Λ

+
k be the k + 1 chains traversed by

this procedure. These chains cover all edges of A≤k(Γ+), and each edge lies exactly on one
chain. Similarly we cover the edges of A≤k(Γ−) by k + 1 convex curves Λ−0 ,Λ

−
1 , . . . ,Λ

−
k .

Let Ξ = {ξ+0 , . . . , ξ
+
k , ξ

−
0 , . . . , ξ

−
k } be the family of unit-disk curves induced by these convex

and concave chains. By (2.1), Ξ covers all edges of A≤k(D). Since a unit circle intersects a
unit-disk curve in at most two points, we conclude the following.

Lemma 2.2. The edges of A≤k(D) can be covered by at most 2k + 2 unit-disk curves, and a
unit circle intersects O(k) edges of A≤k(D).

The curves in Ξ may contain edges of A(D) whose levels are greater that k. If we wish to
find a family of unit-disk curves whose union is the set of edges in A≤k(D), we proceed as
follows. We add the x-extremal points of each disk as vertices of A(D), so each edge is now
x-monotone and lies in a lower or an upper semicircle. By (2.1), only O(k) such vertices lie
in A≤k(D). We call a vertex of A≤k(D) extremal if it is an x-extremal point on a disk or an
intersection point of a lower and an upper semicircle. An extremal vertex of the latter type
is an intersection point of ξ+i , ξ

−
i ∈ Ξ. Since each such pair intersects in at most two points,

there are O(k2) extremal vertices. For each extremal vertex v we do the following. If there is
an edge e of A≤k(D) lying to the right of v, we follow the arc containing e until we reach an
extremal vertex or we leave A≤k(D). In the former case we stop. In the latter case we are at
a convex vertex v′ of ∂A≤k(D), and we switch to the other arc incident on v′ and continue.
These curves have been drawn in Figure 1(a). This procedure returns an x-monotone unit-disk
curve that lies in A≤k(D). It can be shown that this procedure covers all edges of A≤k(D). If
A≤k(D) is represented as a planar graph, we can compute these curves in time proportional to
the number of edges in A≤k(D). We thus obtain the following:

Lemma 2.3. Let D be a set of n unit disks in R2. Given A≤k(D), we can compute, in time
O(nk), a family of O(k2) x-monotone unit-disk curves whose union is the set of edges of
A≤k(D).

Remark. Since A≤k(D) can consist of Ω(k2) connected components, the O(k2) bound is
tight in the worst case; see Figure 2.

Dynamic Data Structures. We need a dynamic data structure for storing a set D of unit
disks that supports the following two operations:

• (O1) Insert a disk into D or delete a disk from D;

4

Figure 2: Lower bound. A≤2(D) (shaded region) has 4 connected components. The right
image is zoomed in of the center of the left image.

• (O2) For a given k, determine whether A≤k(D) 6= ∅.

Hershberger and Suri [19], describe how to maintain I(D) under insertion/deletion inO(log n)
time per update and how to find the point in I(D) with the smallest y-coordinate in O(log n)
time. We use this in conjunction with Matoušek’s algorithm [21] for visiting all basis of an
LP-type problem with at most k violations. Specifically we examine the LP-type problem of
finding the smallest y-coordinate of I(D) with k violations, which has a basis size of 2 and
may be infeasible. Thus the path to visit all basis is of lengthO(k3) and using Hershberger and
Suri’s data structure we traverse each step of the path in O(log n) time by inserting or deleting
a constraint and finding the discs defining the minimal y-coordinate.

Lemma 2.4. There exists a dynamic data structure for storing a set of n unit disks so that (O1)
can be performed in O(log n) time, and (O2) takes O(k3 log n) time.

Agarwal and Matoušek [1] provide a data structure that can maintain the value of the radius
of the smallest enclosing disk under insertions and deletions in O(nδ) time per update, for any
δ > 0. We combine this with Matoušek’s algorithm for LP-type problems, specifically for the
(1, k)-center problem. Similar to the above data structure, the algorithm determines a path of
lengthO(k3) to traverse all basis with at most k violations, and each is traversed inO(nδ) time
by handling an insertion or deletion using Agarwal and Matoušek’s data structure.

Lemma 2.5. The exists a dynamic data structure for a set of n points such that under inser-
tion/deletion of a point, it can return the answer to the (1, k)-center problem in O(k3nδ), for
any δ > 0.

3 Well-Separated Disks

In this section we describe an algorithm for the case in which the two disks D1, D2 of the
optimal solution are well separated. That is, let c1 and c2 be the centers of D1 and D2, and let
r∗ be their radius. Then ||c1c2|| ≥ r∗; see Figure 3. Without loss of generality, let us assume
that c1 lies to the left of c2. Let D−i be the semidisk lying to the left of the line passing through
c1 in direction normal to c1c2. A line ` is called a separator line ifD1∩D2 = ∅ and ` separates
D−1 from D2, or D1 ∩ D2 6= ∅ and ` separates D−1 from the intersection points ∂D1 ∩ ∂D2.

5

ui

c1
c2

!

p[i]
a

p
[i]
n−b

Figure 3: Let ` is a separator line for disks D1 and D2.

We first show that we can quickly compute a set of O(k2) lines that contains a separator line.
Next, we describe a decision algorithm, and then we describe the algorithm for computing D1

and D2 provided they are well separated.

Computing separator lines. We fix a sufficiently large constant h and choose a set U =
{u1, . . . , uh} ⊆ S1 of directions, where ui = (cos(2πi/h), sin(2πi/h)).

For a point p ∈ R2 and a direction ui, let p[i] be the projection of p in the direction normal
to ui. Let P [i] = 〈p[i]

1 , . . . , p
[i]
n 〉 be the sorted sequence of projections of points in the direction

normal to ui. For each pair a, b such that a+ b ≤ k, we choose the interval δ[i]a,b = [p[i]
a , p

[i]
n−b]

and we place O(1) equidistant points in this interval. See Figure 3(a). Let L[i]
a,b be the set of

(oriented) lines in the direction normal to ui and passing though these points. Set

L =
⋃

1≤i≤h
a+b≤k

L
[i]
a,b.

The set L can be computed in O(k2n log n) time. We claim that L contains at least one
separator line. Let ui ∈ U be the direction closest to −−→c1c2. Suppose pa and pn−b are the first
and the last points of P in the direction ui that lie inside D1 ∪D2. Since |P \ (D1 ∪D2)| ≤ k,
a+ b ≤ k. Let q1 be the extreme point of D−1 in direction ui and let q2 be the extreme point of
D2 \D1 in direction −ui. Since ui is within a small constant angle of −−→c1c2

〈q2 − q1, ui〉 ≥ α〈q2 − q1,−−→c1c2〉 =
α

2
〈c2 − c1,−−→c1c2〉 ≥

α

6
〈pn−b − pa, ui〉,

where α ≤ 1 is a constant depending on h. Hence if at least 6/α points are chosen in the
interval δ[i]a,b, then one of the lines in L[i]

a,b is a separator line. We conclude the following.

Lemma 3.1. We can compute in O(k2n log n) time a set L of O(k2) lines that contains a
separator line.

6

Let D1, D2 be a (2, k)-center of P , let ` ∈ L be a line, and let P− ⊆ P be the set of points
that lie in the left halfplane bounded by `. We call D1, D2 a (2, k)-center consistent with ` if
P− ∩ (D1 ∪ D2) ⊆ D1, the center of D1 lies to the left of `, and ∂D1 contains at least one
point of P−. We first describe a decision algorithm that determines whether there is a (2, k)-
center of unit radius that is consistent with `. Next, we describe an algorithm for computing
a (2, k)-center consistent with `, which will lead to computing an optimal (2, k)-center of P ,
provided there is a well-separated optimal (2, k)-center of P .

Decision algorithm. Let ` ∈ L be a line. We describe an algorithm for determining whether
there is a unit radius (2, k)-center of P that is consistent with `. Let P− (resp. P+) be the
subset of points in P that lie in the left (resp. right) halfplane bounded by `; set n− = |P−|,
n+ = |P+|. Suppose D1, D2 is a unit-radius (2, k)-center of P consistent with `, and let c1, c2
be their centers. Then P− ∩ (D1 ∪D2) ⊆ D1 and |P− ∩D1| ≥ n− − k. For a subset Q ⊂ P ,
let D(Q) = {D(q) | q ∈ Q} where D(q) is the unit disk centered at q. Let D− = D(P−) and
D+ = D(P+). For a point x ∈ R2, let D+

x = {D ∈ D+ | x ∈ D}. Since ∂D1 contains a
point of P− and at most k points of P− do not lie in D1, c1 lies on an edge of A≤k(D−).

We first compute A≤k(D−) in O(nk log n) time.For each disk D ∈ D+, we compute the
intersection points of ∂D with the edges of A≤k(D−). By Lemma 2.2, there are O(nk) such
intersection points, and these intersection points split each edge into edgelets. The total number
of edgelets is alsoO(nk). Using Lemma 2.2, we can compute all edgelets in timeO(nk log n),
because each disk boundary from D+ intersects at most O(k) edges of A≤k(D−) and each
intersection can be found in O(log n) time be examining the covering unit disk curves. All
points on an edgelet γ lie in the same subset of disks of D+, which we denote by D+

γ . Let
P+
γ ⊆ P+ be the set of centers of disks in D+

γ , and let κγ = λ(γ,D−) be the level of γ
in D−. A unit disk centered at a point on γ contains P+

γ and all but κγ points of P−. If at
least k′ = k − κγ points of P+ \ P+

γ can be covered by a unit disk, which is equivalent to
A≤k′(D+ \Dγ) being nonempty, then all but k points of P can be covered by two unit disks.

When we move from one edgelet γ of A≤k(D−) to an adjacent one γ′ with σ as their
common endpoint, then D+

γ = D+
γ′ (if σ is a vertex of A≤k(D−)), D+

γ′ = D+
γ ∪ {D} (if

σ ∈ ∂D and γ′ ⊂ {D}), or D+
γ′ = D+

γ \ {D} (if σ ∈ ∂D and γ ⊂ D). We therefore
traverse the graph induced by the edgelets of A≤k(D) and maintain D+

γ in the dynamic data
structure described in Section 2 as we visit the edgelets γ of A≤k(D−). At each step we
process an edgelet γ, insert or delete a disk into D+

γ , and test whether A≤j(D+
γ) = ∅ where

j = k − λ(γ,D−). If the answer is yes at any step, we stop. We spend O(k3 log n) time at
each step, by Lemma 2.4. Since the number of edgelets is O(nk), we obtain the following.

Lemma 3.2. Let P be a set of n points in R2, ` a line in L, and 0 ≤ k ≤ n an integer. We
can determine in O(nk4 log n) time whether there is a unit-radius (2, k)-center of P that is
consistent with `.

Optimization algorithm. Let ` be a line in L. Let r∗ be the smallest radius of a (2, k)-
center of P that is consistent with `. Our goal is to compute a (2, k)-center of P of radius
r∗ that is consistent with `. We use the parametric search technique [23] — we simulate the
decision algorithm generically at r∗ and use the decision algorithm to resolve each comparison,
which will be of the form: given r0 ∈ R+, is r0 ≤ r∗? We simulate a parallel version of the

7

decision procedure to reduce the number of times the decision algorithm is invoked. Note that
we need to parallelize only those steps of the simulation that depend on r∗, i.e., that require
comparing a value with r∗. Instead of simulating the entire decision algorithm, as in [14], we
stop the simulation after computing the edgelets and return the smallest (2, k)-center found so
far, i.e., the smallest radius for which the decision algorithm returned “yes.” Since we stop the
simulation earlier, we do not guarantee that we find the a (2, k)-center of P of radius r∗ that is
consistent with `. However, as argued below this is sufficient for our purpose.

Let P−, P+ be the same as in the decision algorithm. Let D−, D+ etc. be the same as above
except that each disk is of radius r∗ (recall that we do not know the value of r∗). We simulate
the algorithm to compute the edgelets of A≤k(D−) as follows. First, we compute the ≤kth
order farthest point Voronoi diagram of P− in time O(n log n+ nk2) [4]. Let e be an edge of
the diagram with points p and q of P− as its neighbors, i.e., e is a portion of the bisector of p
and q. Then for each point x ∈ e, the disk of radius ||xp|| centered at x contains at least n−−k
points of P−. We associate an interval δe = {||xp|| | x ∈ e}. By definition, e corresponds
to a vertex of A≤k(D−) if and only if r∗ ∈ δe; namely, if ||xp|| = r∗, for some x ∈ e, then
x is a vertex of A≤k(D−), incident upon the edges that are portions of ∂D(p) and ∂D(q).
Let X be the sorted sequence of the endpoints of the intervals. By doing a binary search on
X and using the decision procedure at each step, we can find two consecutive endpoints in
X between which r∗ lies. We can now compute all edges e of the Voronoi diagram such that
r∗ ∈ δe. We thus compute all vertices of A≤k(D−). Since we do not know r∗, we do not have
actual coordinates of the vertices. We represent each vertex as a pair of points. Similarly, each
edge is represented as a point p ∈ P−, indiciating that e lies in ∂D(p), and it can be computed
using the cells of the Voronoi diagram. Given a vertex of A≤k(D−) and an outgoing edge,
represented by the point p ∈ P−, we can compute the other endpoint as the next edge e′ of
the Voronoi cell of the p that is a point in A≤(D−) by walking around the boundary of the
cell. Once we have all the edges of A≤k(P−), we can construct the graph induced by them
and computeO(k2) x-monotone unit-disk curves whose union is the set of edges in A≤k(P−),
using Lemma 2.3. Since this step does not depend on the value of r∗, we need not parallelize
it. Let Ξ = {ξi, . . . , ξu}, u = O(k2), be the set of these curves.

Next, for each disk D ∈ D+ and for each ξi ∈ Ξ, we compute the edges of ξi that ∂D
intersects, using a binary search. We perform these O(nk2) binary searches in parallel and use
the decision algorithm at each step. Incorporating Cole’s technique [11] in the binary search,
the decision procedure is invoked only O(log n) times. For an edge e ∈ A≤k(D), let D+

e ∈ D

be the set of disks whose boundaries intersect e. We sort the disks in D+
e by the order in which

their boundaries intersect e. By doing this in parallel for all edges and using a parallel sorting
algorithm for each edge, we can perform this step by invoking the decision algorithm O(log n)
times. The total time spent is O(nk4 log2 n).

Putting pieces together. We repeat the optimization algorithm for all lines in L and return
the smallest (2, k)-center that is consistent with a line in L. Since Lemma 3.1 shows that as
long as the solution is well separated at least one line in L is a separator line for the optimal
(2, k)-center of P , the smallest radius returned must be that of the optimal (2, k)-center of P .
Hence, we conclude the following:

Lemma 3.3. Let P be a set of n points in R2 and 0 ≤ k ≤ n an integer. If an optimal

8

(2, k)-center of P is well separated, then the (2, k)-center problem for P can be solved in
O(nk6 log2 n) time.

4 Nearly Concentric Disks

z!

C

D1

D2

ρ−

ρ+

Figure 4: Two unit disks D1 and D2 or radius r∗ with centers closer than a distance r∗.

In this section we describe an algorithm for the case in which the two disks D1 and D2 of
the optimal solution are not well separated. More specifically, let c1 and c2 be the centers of
D1 and D2 and let r∗ be their radius. This section handles the case where ||c1c2|| ≤ r∗.

First, we find an intersector point z of D1 and D2 — a point that lies in D1 ∩D2. We show
how z defines a set P of O(n2) possible partitions of P into two subsets, such that for one
partition Pi,j , P \Pi,j the following holds: (D1 ∪D2)∩P = (D1 ∩Pi,j)∪ (D2 ∩ (P \Pi,j)).
Finally, we show how to search through the set P inO(k7n1+δ) time, deterministically, for any
δ > 0, or in O(k7n log3 n) expected time.

Finding an intersector point. Let C be the circumcircle of P ∩ (D1 ∪D2). Eppstein [14]
shows that we can select O(1) points inside C such that at least one, z, lies in D1 ∩ D2. We
can hence prove the following.

Lemma 4.1. Let P be a set of n points in R2. We can generate in O(nk3) time a set Z of
O(k3) points such that for any nearly concentric (2, k)-center D1, D2, one of the points in Z

is their intersector point.

Proof. Using Matoušek’s [21] algorithm for solving LP-type problems with violations, in
O(k3n) time we can find the smallest circle that contains n − k points of P . Briefly, the
algorithm runs by finding the three points defining the circumcircle, removing each one in
turn, and recursing until k points have been removed. Matoušek shows that if we keep track of
which nodes in the recursion we reach and halt the recursion if we have seen that node before,
then the size of the recursion tree is only O(k3). In the running of this algorithm we generate
all circles which include exactly n− j points of P for 0 ≤ j ≤ k. We claim that one of these
circles must be C.

9

If the initial circle is not C, then it must have at least one point on its boundary which is not
in P ∩ (D1 ∪D2). At least one path of the recursion removes this point. Since we can reach
the point set P ∩ (D1 ∪D2) in at most k steps, some step in this recursion must return C.

Finally, since the area of D1 ∪ D2 is a constant fraction of C when D1, D2 are nearly
concentric, then by selecting a constant number of points in C one can be guaranteed to be an
intersector point.

Let z be an intersector point of D1 and D2, and let ρ+, ρ− be the two rays from z to the
points of ∂D1∩∂D2. SinceD1 andD2 are nearly concentric, the angle between them is at least
some constant θ. We choose a set U ⊆ S1 of h = d2π/θe uniformly distributed directions.
For at least one u ∈ U , the line ` in direction u and passing through z separates ρ+ and ρ−, see
Figure 4. We fix a pair z, u in Z × U and compute a (2, k)-center of P , as described below.
We repeat this algorithm for every pair. If D1 and D2 are nearly concentric, then our algorithm
returns an optimal (2, k)-center.

Fixing z and u. For a subsetX ⊂ P and for an integer t ≥ 0, let rt(X) denote the minimum
radius of a (1, t)-center of X . Let P+ (resp. P−) be the subset of P lying above (resp. below)
the x-axis; set n+ = |P+| and n− = |P−|. Sort P+ = 〈p+

1 , . . . , p
+
n+〉 in clockwise order

and P− = 〈p−1 , . . . , p
−
n−〉 in counterclockwise order. For 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, let

Pi,j = {p+
1 , . . . , p

+
i , p

−
1 , . . . , p

−
j } and Qi,j = P \ Pi,j . For 0 ≤ t ≤ k, let

mt
i,j = max{rt(Pi,j), rk−t(Qi,j)}.

For 0 ≤ t ≤ k, we define an n+ × n− matrix M t such that M t(i, j) = mt
i,j .

Suppose z is an intersector point of D1 and D2, ` separates ρ+ and ρ−, and ρ+ (resp. ρ−)
lies between p+

a , p
+
a+1 (resp. p−b , p

−
b+1). Then P ∩ (D1 ∪D2) = (Pa,b ∩D1) ∪ (Qa,b ∪D2);

see Fig 4. If |Pa,b \D1| = t, then r∗ = mt
a,b. The problem thus reduces to computing

µ(z, u) = min
i,j,t

mt
i,j

where the minimum is taken over 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, and 0 ≤ t ≤ k. For each t, we
compute µt(z, u) = mini,jmt

i,j and choose the smallest among them.
We note two properties of the matrix M t that will help search for µt(z, u):

• (P1) If rt(Pi,j) > rk−t(Qi,j) then mt
i,j ≤ mt

i′,j′ for i′ ≥ i and j′ ≥ j. These partitions
only add points to Pi,j and removes points from Qi,j , and thus cannot decrease rt(Pi,j)
or increase rk−t(Qi,j). Similarly, if rk−t(Qi,j) > rt(Pi,j), then mt

i,j < mt
i′,j′ for i′ ≤ i

and j′ ≤ j.

• (P2) Given a value r, if rt(Pi,j) > r, then mt
i′,j′ > r for i′ ≥ i and j′ ≥ j, and if

rt(Qi,j) > r, then mt
i′,j′ > r for i′ ≤ i and j′ ≤ j.

Deterministic solution. We now have the machinery to use a technique of Frederickson and
Johnson [15]. For simplicity, let us assume that n+ = n− = 2τ+1 where τ = dlog2 ne+O(1).
The algorithm works in τ phases. In the beginning of the hth phase we have a collection Mh

of O(2h) submatrices of M t, each of size (2τ−h+1 + 1) × (2τ−h+1 + 1). Initially M1 =

10

{M t}. In the hth phase we divide each matrix N ∈ Mh into four submatrices each of size
(2τ−h+ 1)× (2τ−h+ 1) that overlap along one row and one column. We call the cell common
to all four submatrices the center cell of N . Let M′h be the resulting set of matrices. Let
C = {(i1, j1), . . . , (is, js)} be the set of center cells of matrices in Mh. We compute mt

il,jl
for

each 1 ≤ l ≤ s. We use (P1) to remove the matrices of Mh that are guaranteed not to contain
the value µt(z, u). In particular, if mt

il,jl
= rt(Pil,jl) and there is a matrix N ∈ M′h with the

upper-left corner cell (i′, j′) such that i′ ≤ il and j′ ≤ jl, then we can remove N . Similarly if
mt
il,jl

= rk−t(Qi,j) and there is a matrix N ∈M′h with the lower-right corner cell (i′, j′) such
that i′ ≥ il and j′ ≥ jl, we can delete N . We then set M′h to Mh+1.

i

j

Figure 5: Example of running deterministic algorithm through 3 phases. Shaded regions have
been pruned. Center cells are darkened.

Lemma 4.2. Before the hth phase consider a diagonal from large i and j to small i and j that
passes through at least one center cell of a matrix N ∈ Mh. It passes through at most one
more center cell of a matrix N ′ ∈Mh.

11

Proof. We show this inductively. The base case is clearly true for the single center cell in M1.
Assume it is true for Mh, then we show it is true for Mh+1. See Figure 5. We consider two
cases, first the diagonal passes through a center cell of Mh. In this case if it passes through two
center cells of Mh, then it passes through 4 center cells of M′h, but the pruning step eliminates
at least two of them. In the second case, the diagonal does not pass through a center cell of
Mh. We can bound the number of center cells of matrices it passes through in M′h to 4 using
the inductive hypothesis. Consider one of the interior center cells (i, j) ∈ N ∈ M′h it passes
through, neither the first not the last. When the pruning step for the matrix in Mh that contains
N is called, it either eliminated the other matrixes in M′h that the diagonal passes to before
or after N . If the diagonal passes through 3 center cells in M′h, then this reduces it to two, if
the diagonal passes through 4 center cells, the applying this analysis to both interior matrices
reduces it to two.

Lemma 4.2 implies that O(n) cells remain in M′h after the pruning step and that they can be
connected by two monotone paths in Mt, which consists of O(n) cells. Since Pi,j differs from
Pi−1,j and Pi,j−1 by one point, we can compute mt

il,jl
for all (il, jl) ∈ C using Lemma 2.5 in

total time O(k3n1+δ). Hence, each phase of the algorithm takes O(k3n1+δ) time.

Lemma 4.3. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, µt(z, u) can be computed in time
O(k3n1+δ), for any δ > 0.

Randomized solution. We can slightly improve the dependence on n by using the dynamic
data structure in Section 2 and (P2). As before, in the hth phase, for some constant c > 1, we
maintain a set Mh of at most c2h submatrices of M t, each of side length 2τ−h+1 + 1, and their
center cells C. Each submatrix is divided into four submatrices of side length 2τ−h+1, forming
a set M′h. To prune M′h, we choose a random center cell (i, j) from C and evaluate r = mt

i,j in
O(k3n) time. For each other center cell (i′, j′) ∈ C, mt

i′,j′ > r with probability 1/2, and using
(P2), we can remove a submatrix from M′h. More specifically, if mt

i′,j′ > r, then any matrix
N ∈ M′h with an lower right corner (i′, j′) such that i′ ≤ i and j′ ≤ j or a upper left corner
(i′′, j′′) such that i′′ ≥ i and j′′ ≥ j, then we can prune N from M′h. Eppstein [14] proves that
by repeating this process a constant number of times, we expect to reduce the size of M′h to
c2h+1.

On each iteration we use the dynamic data structure described in Section 2. For O(n) inser-
tions and deletions, it can compare each center cell from C to r in O(k3n log2 n) time. Thus,
finding µt(z, u) takes expected O(nk3 log3 n) time.

Lemma 4.4. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, µt(z, u) can be computed in expected time
O(k3 log3 n).

Putting pieces together. By repeating either above algorithm for all 0 ≤ t ≤ k and for
all pair (z, u) ∈ Z × U , we can compute a (2, k)-center of P that is optimal if D1 and D2 are
nearly concentric. Combining this with Lemma 3.3, we obtain the main result of the paper.

Theorem 4.1. Given a set P of n points in R2 and an integer k ≥ 0, an optimal (2, k)-center
of P can be computed in O(k7n1+δ) (deterministic) time, for any δ > 0 or in O(k7n log3 n)
expected time.

12

5 The (p, k)-Center Problem Under the `∞ Metric

This section focuses on the `∞ version of the (p, k)-center problem, and hence all references
to the (p, k)-center problem herein are referring to the `∞ variant. We use extensively that for
p ≤ 3, the (p, 0)-center problem is LP-type [27], and thus for p ≤ 3 the (p, k)-center problem
can be solved in O(kO(1)n) time. We also use that if all points lie in R1, then the (p, 0)-center
problem is LP-type for any p > 0, with combinatorial dimension O(p), and thus in R1, the
(p, k)-center problem can be solved in O(kO(p)n) time.

Like in the `2 variant, we first study the decision version of the dual problem; here an
arrangement of unit squares. Let S = {S1, . . . , Sn} be a set of n unit squares (side length
1) in R2. Let A(S) be the arrangement of S. We say a point q stabs a square S ∈ S if q ∈ S.
Let S(q) ⊂ S be the set of squares stabbed by q.

We seek to determine whether there exists a placement of p points Q = {q1, . . . , qp} such

that
∣∣∣⋃q∈Q S(q)

∣∣∣ ≥ n − k. We refer to this as the (p, k)-stabbing decision problem. All of
our algorithms also return a solution if one exists. By replacing each point in the (p, k)-center
problem with a unit square centered at that point, then the p stabbing points of the (p, k)-
stabbing decision problem serve as the center points of unit squares that contain n − k of the
original point set.

Structure. We start by reviewing structure observed by Sharir and Welzl [27] about the
(p, 0)-stabbing decision problem.

If a horizontal or vertical line ` passes through all S ∈ S, then this (p, 0)-center decision
problem reduces to a variant in R1 because any stabbing point q can be replaced with q′, the
closest point on ` to q, so that S(q) ≤ S(q′). We can then solve the (p, 0)-stabbing decision
problem in O(n) time or the (p, k)-center problem in O(nkO(p)) time. We henceforth assume
that this is not the case.

Let `L describe the line passing through the right boundary of the leftmost square. Similarly,
let `R (resp. `T , `B) describe the line passing through the left (resp. bottom, top) boundary of
the rightmost (resp. topmost, bottommost) square. Let H0 describe the rectangle bounded on
its left side by `L, its right side by `R, its bottom side by `B , and its top side by `T . (See Figure
6.) H0 must have positive area otherwise a horizontal or vertical line would pass through the
set of all squares.

Let H0 ∩ `X , for X ∈ {L,R, T,B}, describe the four boundary segments of H0. Call the
intersection of two boundary segments a corner of H0. If the (p, 0)-stabbing decision problem
has a solution, we claim that each boundary segment of H0 contains a stabbing point in a
solution of the (p, 0)-stabbing decision problem (in particular, the solution of p stabbing points
contained in the smallest rectangle). For instance, if H0∩ `L does not contain a stabbing point,
then we can replace the point q stabbing the leftmost square with another point q′ on H0 ∩ `L
such that S(q) ≤ S(q′).

If a stabbing point q lies on corner, it lies on two boundary segments at once, and we can set
S′ = S \ S(q) and then solve the (p − 1, k)-stabbing decision problem on S′. Of course, we
don’t know which corner is a stabbing point, but there are a constant number and we can try
them all.

Define `L
jL (resp. `R

jR , `T
jT , `B

jB) as the line through the right (resp. left, bottom, top) boundary

13

of the jLth leftmost (resp. jRth rightmost, jT th topmost, jBth bottommost) square. We can
also define the rectangleHjL,jR,jT ,jB which is defined by the intersection of halfspaces defined
by lines `L

jL , `R
jR , `T

jT , and `B
jB . We actually want to be slightly careful since one square may be

in the jLth leftmost and jT th topmost squares. We count squares first from left and right, then
those remaining from top and bottom. Let SjL,jR,jT ,jB be the set of squares which intersect
HjL,jR,jT ,jB .

Dynamic data structure. We will need a data structure to be able to maintain H0 and S

under the removal of the set S(q) for a possible stabbing point q. Sharir and Welzl [27] provide
a data structure that stores a set of canonical subsets, such that under this operation S \ S(q)
can be stored as the union of O(log n) (not necessarily disjoint) canonical subsets. The new
boundary lines of H0 can be constructed in O(log n) time from the O(log n) subsets.

The structure is built, and extended to handle outliers, as follows. In the x- and y-directions
store binary trees of S sorted by their coordinates. Each node in the tree stores a canonical
subset of all squares in its subtree. For a query point q, we can return all squares that cannot
intersection q based on x- and y-coordinates independently, as a set of O(log n) canonical
subsets each. The union is S \ S(q). We may need to build this data structure p − 1 levels
deep on each canonical subset for solving the (p, k)-stabbing decision problem. To construct
H0 quickly, we can find the maximum and minimum square in x and y coordinate over all
O(log n) canonical subsets. To instead construct HjL,jR,jT ,jB , we can find the jL minimum x

coordinate inO(jL log n) time and similarly for jR, jT , and jB; thus constructingHjL,jR,jT ,jB

can be done in O(k log n) time, where jL, jR, jT , jB ≤ k.

5.1 The (4, k)-Stabbing Decision Problem

First we choose positive integral values jL, jR, jT , and jB such that jL+jR+jT +jB ≤ k+4
and create HjL,jR,jT ,jB . If jL, jR, jT , and jB are chosen correctly, then HjL,jR,jT ,jB is the
smallest rectangle that contains the 4 stabbing points. If the decision is true, then one of this set
of O(k4) rectangles must match the solution because it can not exclude more than k rectangles
in any one direction. In what follows, we assume we have chosen jL, jR, jT , jB correctly, but
in the full algorithm we try each until we find a solution. If HjL,jR,jT ,jB has non positive area
then we can solve the problem in R1. We then see if one of the corners, q, of HjL,jR,jT ,jB

can be a stabbing point by solving the (3, k − (jL + jR + jT + jB − 4))-stabbing decision
problem on SjL,jR,jT ,jB \ S(q). If the answer is negative for each corner, and we assume that
we have chosen jL, jR, jT , jB correctly, then each boundary segment of HjL,jR,jT ,jB must
contain a distinct stabbing point. Let SI ⊂ SjL,jR,jT ,jB be the subset so that each S ∈ SI does
not intersection ∂HjL,jR,jT ,jB — these squares must be totally contained in HjL,jR,jT ,jB . Let
kI = |SI |.

In the following we assume thatHjL,jR,jT ,jB is the smallest rectangle to contain all stabbing
points and to simplify notation we set S′ = SjL,jR,jT ,jB \ SI , κ = k − (jL + jR + jT + jB −
4) − kI , and H = HjL,jR,jT ,jB . Finally, we assume that the solution to the (p, κ)-stabbing
decision problem on S′ has no point on the corners of H .

14

qRqL

qT

qB

!B
2

!T
3

!L
1

!R
2

H1,2,3,2

Figure 6: Structure of a 4-center problem with `∞-distance. RectangleH = H1,2,3,2 is shaded
and bounded by lines `T , `R, `B, `L on the top, right, bottom, and left sides, respectively. The
four centers appear on the four sides of H labeled. There are five outliers squares shown in
bold.

4 Rotating Calipers. We can now apply a rotating calipers type technique with four calipers,
with one point on each edge of H . Since each square can intersect each edge of H at most
twice, the boundary of H is divided into O(n) regions such that all points within a region of
the boundary intersect the same set of squares. Squares can intersect more than one edge of
H , either by also containing a corner point (i.e. left and top), intersect two opposite sides (i.e.
left and right), or both (i.e. left, top, and right). In the third case when a square intersects three
sides it must entirely contain one of those sides, and thus any point chosen on that side must
stab that square and we can ignore it. Also only one pair, w.l.o.g. top and bottom, can have
squares intersecting both, otherwise both pairs of opposite sides are shorter than a distance
1, and any square intersecting a pair of opposite sides must entirely contain one of the other
sides. Assuming the top and bottom edges are longer than 1 (so no square can intersect both
the left and right edge) we consider two cases: where the point on the top side is right of the
point on the bottom side, and vice versa. We focus on the first case and handle the other one
symmetrically.

We treat the subset of squares S2 ⊆ S′ which intersect the top and bottom edges separately
from the subset SE = S′ \ S2 of the ones that only intersection only one edge or two adjacent
edges. Each square S ∈ SE describes one interval on the curve defined by ∂H . Thus, given a
placement of four stabbing points, one on each boundary side, the squares from SE which are
not stabbed lie in one of four intervals of ∂H bounded by the stabbing points. In the optimal
solution let there be iR unstabbed squares in SE between the qR and qT , iT squares between
qT and qL, iL squares between qL and qB , and iB squares between qB and qR. For any values
iL, iR, iT , and iB we can determine if there is placement of the stabbing points on ∂H that
has exactly those many unstabbed squares in the associated intervals. Given a placement of qR

in bottommost region of the right boundary edge, we can try to place qT skipping iR squares,
then place qL skipping iT squares, and finally qB skipping iL squares. If there are iB squares
remaining it is successful. If it is not successful at any placement step, then we shift qR to the

15

next region up on the right boundary and try shifting the other stabbing points to the next region
in a counter-clockwise direction to satisfy the constraints. If all attempts are unsuccessful for
all placements of pR on the right edge, then this choice of iR, iL, iB , and iT is incorrect. Since
there are only O(n) regions, and each stabbing point is in each region at most once, since they
only move counter-clockwise, this takes O(n) time.

Once a solution for SE has been found, we attempt find a solution for S2. These squares
can be sorted left to right and a successful stabbing will have i1 unstabbed squares from S2

left of qB , i2 squares between qB and qT , and i3 squares right of qT , for some nonnegative
integers i1, i2, i3. We can now adjust qB and qT such that the sets SE(qB) and SE(qT) do not
change. The boundaries of the squares from S2 divide the regions into intervals so that within a
interval S2(qB) and S2(qT) do not change. After preprocessing to find the left boundary of the
rightmost square in S2 and the right boundary of the leftmost square in S2, in O(i1 + i3) time
we check if we can place qB and qT to satisfy i1 and i3. Quickly checking the i2 constraint
requires preprocessing on the intervals created by the sorted ordering of S2 so each region
contains the number of points stabbed and the number of unstabbed squares to the right. Thus
if qT is in a region so that it stabs s squares and there are r squares to the right of the region
that qB is in, then there are r − s − i3 unstabbed squares from S2 between qB and qT . If
r− s− i3 ≤ i2 then we return true, if not we go back to dealing with SE and shift the stabbing
points in counter-clockwise order.

Although, we do not know the values of iR, iL, iT , iB , i1, i2, and i3 we do know that
iR + iL + iT + iB + i1 + i2 + i3 = κ, thus there are only O(k6) possible values. For each
set of values, we require O(n) time to handle SE and for each step O(k) time to handle S2,
after preprocessing. Let T∞(n, p, k) be the required time for the algorithms described above
to solve the (p, k)-stabbing decision problem on n unit squares.

Lemma 5.1. T∞(n, 4, k) = O(k4(T∞(n, 3, k)+k11n)+n log n) or justO(k4(T∞(n, 3, k)+
k11n)) if the squares are presorted along the x- and y-axis.

Theorem 5.1. T∞(n, 4, k) = O(kO(1)n + n log n) or just O(kO(1)n) if the squares are pre-
sorted along the x- and y-axis.

5.2 The (5, k)-Stabbing Decision Problem

We first construct O(k4) rectangles H = ∂HjL,jR,jT ,jB as above. To simplify notation, also
assume that k squares intersect or lie inside of H and that at least one center must lie on each
side of H . We now have to consider 3 cases.

First, one of the centers lies on a corner ofH . In this case, we can try all corners, remove the
squares that intersect that corner and apply the algorithm for p = 4 on the remaining squares.

Second, all 5 of the centers lie on the rectangle H (not its interior), but none lie on a corner.
Third, 4 centers lie on the boundary of H , but none lie on a corner and the fifth center lies in
the interior of H . These cases are more complicated and requires the dynamic data structure
described above.

In the second and third case we choose non-negative integers i1 through i9 such that i1+i2+
i3 +i4 +i5 +i6 +i7 +i8 +i9 = k. These determine which points are outliers and not contained
in the 5 centers. We choose O(k8) sets of integers and complete the following for each set.
For what follows we assume we have chosen the correct set. Each side of H has at least one

16

center, and one side has two. We perform the following, assuming each side, in turn, has two
centers; w.l.o.g. let it be the right side. Guess that the left most interval on the bottom edge of
H contains the center point, pB . Let SpB = S \ S(pB) be the set of squares that do not contain
pB . Using the above 4-level dynamic data structure, obtain SpB and constructH ′ = H1,1,1,1+i1

on SpB . The bottommost i1 remaining squares have been designated as outliers, not to contain
any center point. Now either the bottom left or the bottom right corner of H ′ must contain a
center point. Check each case by the following; w.l.o.g. assume its the bottom right corner,
pR. Create SpB \ SpB (pR) using the dynamic data structure, and recalculate H1,1+i2,1,1+i3 .
Again the i2 rightmost squares and i3 bottommost squares are designated outliers. Now again
either the bottom right or bottom left corner of H must be a center point. Check either, remove
i4 and i5 outliers, and proceed as before removing the squares contained in the third center.
This process repeats once more, removing i6 and i7 outliers, and squares containing the fourth
center. There is now one center left to place. We remove i8 and i9 outliers and can easily check
if the last center can contains all remaining squares. If it cannot then we update pB by sliding it
to the next interval on the bottom edge ofH . We update our 4-level data structure inO(log4 n)
time. This repeats until either all squares can be stabbed by the last center, meaning the result
is true, or all intervals on the bottom edge of H have been tried, meaning the result is false.

Accounting for the O(k4) possible outliers to create the initial rectangle H , and the O(k8)
sets of integers i1 . . . i9, the final running time is O(nk12 log4 n).

The third case is very similar to the second case. We consider a case where pI , the center on
the interior of H , is above either the point on the left side or the right side of H . If this is not
true, we would perform the process symmetrically by guessing a center on the top side instead
of the bottom side. We can remove squares containing the first two center points the same way
as in the second case. When there are three center points remaining, we can still claim that one
lies on the corner of H , but its not necessarily a bottom corner. This just requires a few more
cases to check. It follows that this third case also takes O(nk12 log4 n) time.

5.3 The (4, k)- and (5, k)-Center Problem

We can solve the original primal problem of determining whether a set of p squares can contain
all but k points from an n point set. To find the minimum side length of the squares for this to
be true we can use a matrix searching technique of Frederickson and Johnson [15, 16, 17] with
O(log n) iterations of the above algorithm. The minimal side length of a square is necessarily
the difference in x-coordinates between two points or the difference in y-coordinates between
two points. We implicitly store these two orderings along the columns of two matrices, X and
Y , corresponding to the x- and the y-coordinates of the points. The cells contain the differences
in their values, but are only computed as needed. Using monotone properties of these matrices
we can search for the minimum such difference where our algorithm returns true. We take the
minimum from both matrices.

Theorem 5.2. Given a set P of n points in R2 and an integer k ≥ 0, an optimal (4, k)-center
of P can be computed under the `∞-metric in O(kO(1)n log n) time.

Theorem 5.3. Given a set P of n points in R2 and an integer k ≥ 0, an optimal (5, k)-center
of P can be computed under the `∞-metric in O(kO(1)n log5 n) time.

17

Acknowledgements

We thank Sariel Har-Peled for posing the problem and for several helpful discussions.

References

[1] P. K. Agarwal and J. Matoušek, Dynamic half-space range reporting and its applications,
Algorithmica, 13 (1995), 325–345.

[2] P. K. Agarwal and M. Sharir, Planar geometric locations problems, Algorithmica,
11 (1994), 185–195.

[3] P. K. Agarwal and M. Sharir, Efficient algorithms for geometric optimization, ACM Com-
puting Surveys, 30 (1998), 412–458.

[4] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing
the voronoi diagram of a convex polygon, Discrete Comput. Geom., 4 (1989), 591–604.

[5] T. Chan, More planar two-center algorithms, Comput. Geom.: Theory Apps., 13 (1999),
189–198.

[6] T. Chan, Low-dimensional linear programming with violations, SIAM J. Comput.,
34 (2005), 879–893.

[7] T. Chan, On the bichromatic k-set problem, Proc. 19th Annu. ACM-SIAM Sympos. Dis-
crete Algs., 2007, pp. 561–570.

[8] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, Algorithms for faciity location
problems with outliers, 12th Annu. ACM-SIAM Sympos. on Discrete Algs., 2001, pp. 642–
651.

[9] K. L. Clarkson, A bound on local minima of arrangements that implies the upper bound
theorem, Discrete Comput. Geom., 10 (1993), 427–433.

[10] K. L. Clarkson and P. W. Shor, Applications of random sampling in geometry, II, Discrete
Comput. Geom., 4 (1989), 387–421.

[11] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, Journal of
ACM, 34 (1987), 200–208.

[12] T. K. Dey, Improved bounds for planar k-sets and related problems, Discrete Comput.
Geom., 19 (1998), 373–382.

[13] Z. Drezner and H. Hamacher, Facility Location: Applications and Theory, Springer,
2002.

[14] D. Eppstein, Faster construction of planar two-centers, Proc. 8th Annu. ACM-SIAM Sym-
pos. on Discrete Algs., 1997, pp. 131–138.

18

[15] G. N. Frederickson and D. B. Johnson, The complexity of selection and ranking in x+ y
and matrices with sorted columns, J. Comput. Syst. Sci., 24 (1982), 197–208.

[16] G. N. Frederickson and D. B. Johnson, Finding the k-th shortest pats and p-centers by
generating ans searching good data structures, Journal of Algorithms, 4 (1983), 61–80.

[17] G. N. Frederickson and D. B. Johnson, Generalized selection and ranking: Sorted matri-
ces, SIAM Journal of Computing, 13 (1984), 14–30.

[18] D. Gusfield, Bounds for the parametric minimum spanning tree problem, Humboldt Conf.
on Graph Theory, Combinatorics Comput., Utilitas Mathematica, 1979, pp. 173–183.

[19] J. Hershberger and S. Suri, Finding tailored partitions, Journal of Algorithms, 12 (1991),
431–463.

[20] D. S. Hochbaum, ed., Approximation Algorithms for NP-hard Problems, PWS Publishing
Company, 1995.

[21] J. Matoušek, On geometric optimization with few violated constraints, Discrete Comput.
Geom., 14 (1995), 365–384.

[22] J. Matoušek, E. Welzl, and M. Sharir, A subexponential bound for linear programming
and related problems, Algorithmica, 16 (1996), 498–516.

[23] N. Megiddo, Linear-time algorithms for linear programming in R3 and related problems,
SIAM J. Comput., 12 (1983), 759–776.

[24] N. Megiddo and K. J. Supowit, On the complexity of some common geometric location
problems, SIAM J. Comput., 12 (1983), 759–776.

[25] M. Sharir, On k-sets in arrangement of curves and surfaces, Discrete Comput. Geom.,
6 (1991), 593–613.

[26] M. Sharir, A near-linear time algorithm for the planar 2-center problem, Discrete Comput.
Geom., 18 (1997), 125–134.

[27] M. Sharir and E. Welzl, Rectilinear and polygonal p-piercing and p-center problems,
Proc. 12th Annu. Sympos. Comput. Geom., 1996, pp. 122–132.

19

	Introduction
	Arrangement of Unit Disks
	Well-Separated Disks
	Nearly Concentric Disks
	The (p,k)-Center Problem Under the Metric
	The (4,k)-Stabbing Decision Problem
	The (5,k)-Stabbing Decision Problem
	The (4,k)- and (5,k)-Center Problem

