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Introduction

Aligning an input data set to a model data set is
fundamental to many important problems such as
scanned model reconstruction, structural biochem-
istry, and medical imaging. The input data and the
model data are typically given as a set of points with
the relative positions not known, making the task of
registering them nontrivial.

A popular approach to solving this problem is
known as the iterative closest point (ICP) algo-
rithm [BM92, CM92] which alternates between find-
ing the optimal correspondence between points, and
finding the optimal transformation of one point set
onto the other. As both steps reduce the distance be-
tween the point sets, this process converges, but only
to a local minimum.

However, ICP, and its many variations, are vulner-
able to point sets with outliers. Because ICP will find
correspondences for all points, and then find the op-
timal transformation for the entire point set, the out-
liers will skew the alignment. Many heuristics have
been suggested [DF02, CSK05] including only align-
ing points within a set threshold, but most of these
techniques are not guaranteed to converge, and thus
can possibly go into an infinite loop, or require an
expensive check to prevent this. If the fraction f of
points which are outliers is known, then Trimmed
ICP (TrICP) [CSK05] can be used to find the optimal
alignment of the most relevant fraction f of points.
However, this fraction is rarely known a priori. If an
alignment is given then RANSAC-type methods can
be used to determine a good threshold for determining
these outliers. None of these existing approaches both
find a local minimum and converge.

Our contributions. Our solution to these problems
is to incorporate the fraction of points which are out-
liers into the function being optimized. To this end,

this abstract (see full version [PLT06] for details)
makes the following contributions:

• We formalize a new distance measure between point
sets which accounts for outliers: frmsd.
• We provide an algorithm, Fractional ICP, to opti-

mize frmsd which we prove to converge to a lo-
cal optimum in the correspondence, transformation,
and fraction of outliers.
• We show that Fractional ICP finds an alignment

with only the points which are more likely to be
inliers than outliers.

Fractional RMS Distance

Consider two point sets D, M ∈ R
d. The goal of this

paper is to align an input data set D to a model data
set M under some class of transformations, T , such as
rigid motions. We assume M and D are quite similar
and there exists a strong correspondence between most
points in the data; however, there may be outliers,
points in either set which are not close to any point in
the other set. Our goal is to define and minimize over
a set of transformations a relevant distance between
these two point sets.

We define the root mean squared distance

rmsd(D, M, T, µ) =

s
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|D|
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p∈D

||T (p)− µ(p)||2,

and we seek to minimize this quantity over a set of
transformations T ∈ T and matchings µ : D →
M . rmsd is quite susceptible to outliers because the
squared distance gives a large weight to outliers. To
counteract this, for a fraction f ∈ [0, 1] choose the
f |D| points with the smallest residual distance r =
||p− µ(p)||. Let Df be this set.

We define fractional root mean squared distance

frmsd(D, M, f, T, µ) =
1
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and we seek to minimize this quantity over a set of
transformation T ∈ T , matchings µ : D → M , and
fractions f ∈ [0, 1].

Value of λ. Under reasonable assumptions on the
distribution of outliers and through some straightfor-
ward but tedious probability theory we can show that
for λ = 1.3 (resp. λ = 0.95) for point sets in R

2 (resp.
R

3), that frmsd considers only the points which are
more likely to be inliers than to be outliers. This is
somewhat dependent on the noise among the inliers,
but only weakly dependent on the fraction of inliers.
We show empirically that as λ is increased up to 4 or
5, the minimizing fraction f and the rmsd value does
not change much. Thus, the algorithm is not sensitive
to this regularization parameter.

Fractional ICP

A simple modification of ICP, shown in Algorithm 0.1,
will find a local minimum of frmsd. We refer to this
algorithm as Fractional ICP or FICP.

Algorithm 0.1 FICP(D, M)

1: Compute µ0 = arg min
µ0:D→M

rmsd(D, M, T0, µ0).

2: Compute arg minf0∈[0,1] frmsd(D, M, f0, T0, µ0).
3: i← 0.
4: repeat

5: i← i + 1.
6: Compute arg minDf

rmsd(Df , M, Ti−1, µi−1).
7: Compute arg minTi∈T rmsd(Df , M, Ti, µi−1).
8: Compute arg minµi:D→M rmsd(D, M, Ti, µi).
9: Compute arg minfi∈[0,1] frmsd(D, M, fi, Ti, µi).

10: until (ui = ui−1 and fi = fi−1)

Implementation. Given a standard implementation
of ICP, we need the additional steps of computing the
subset Df (step 6) and computing the fraction f (step
9). Since the rest of the algorithm is unchanged, most
variations of ICP can incorporate this adaptation. The
subset Df can be computed by sorting the residuals
r = ||p−µ(p)|| and letting Df be the f |D| points with
smallest corresponding residuals. Once the residuals
are sorted, the fraction f can be computed by con-
sidering all |D| possible subsets and choosing the one
with smallest value in frmsd.

Convergence of algorithm. Algorithm 0.1 con-
verges to a local minimum of frmsd(D, M, f) over the
space of all transformations, matchings, and fractions
of points used in the matching. This is a local mini-
mum in a sense that if all but one of transformations,
matchings, or fractions is fixed, then the value of the
remaining variable cannot be changed to decrease the
value of frmsd(D, M, f).

Theorem 0.1 For any two points sets D, M ∈
R

d, Algorithm 0.1 converges to a local minimum of
frmsd(D, M, f, T, µ) over (f, T, µ) ∈ [0, 1]×T ×{D →
M}.

Experiments

In the full version [PLT06] we demonstrate that FICP
has a larger radius of convergence than TrICP, and is
faster and more accurate than TrICP and ICP. Also,
we empirically demonstrate that frmsd is not sensi-
tive to λ, but FICP is more robust with λ set larger
than its optimal value. Thus we run all experiments,
unless otherwise specified, with λ = 3. After converg-
ing, λ can be reset to its optimal value and the process
will reconverge quickly.

Figure 1 shows the alignment of the scan at 0◦

(blue) aligned with the scan at 48◦ (red) of the Stan-
ford dragon using ICP and FICP. Notice how when
the scans are aligned with ICP (right), the points in
the dragon’s tail are slightly misaligned, whereas with
FICP (left), the alignment is much better.

Figure 1: Alignment of scans for dragon model with
ICP (right) and FICP (left). Bottom shows zoomed in
view of dragon’s tail.
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