Geometry of Diverse, High-Dimensional, and Nonlinear Imaging Data

Tom Fletcher
School of Computing
University of Utah

June 20, 2012

Manifold Data in Vision and Imaging

- Directional data

Manifold Data in Vision and Imaging

- Directional data
- Transformation groups (rotations, projective, affine)

Manifold Data in Vision and Imaging

- Directional data
- Transformation groups (rotations, projective, affine)
- Shapes

Manifold Data in Vision and Imaging

- Directional data
- Transformation groups (rotations, projective, affine)
- Shapes
- Diffusion tensors, structure tensors

Manifold Data in Vision and Imaging

- Directional data
- Transformation groups (rotations, projective, affine)
- Shapes
- Diffusion tensors, structure tensors
- Diffeomorphisms (deformable transformations)

Manifold Statistics: Averages

Manifold Statistics: Averages

Manifold Statistics: Variability

Shape priors in segmentation

Manifold Statistics: Hypothesis Testing

Testing group differences

Cates, et al. IPMI 2007 and ISBI 2008.

Manifold Statistics: Regression

What is Shape?

What is Shape?

Shape is the geometry of an object modulo position, orientation, and size.

Shape Analysis

A shape is a point in a high-dimensional, nonlinear shape space.

Shape Analysis

A shape is a point in a high-dimensional, nonlinear shape space.

Shape Analysis

A shape is a point in a high-dimensional, nonlinear shape space.

Shape Analysis

A shape is a point in a high-dimensional, nonlinear shape space.

Shape Analysis

A metric space structure provides a comparison between two shapes.

Kendall's Shape Space

- Define object with k points.
- Represent as a vector in $\mathbb{R}^{2 k}$.
- Remove translation, rotation, and scale.
- End up with complex projective space, $\mathbb{C P}^{k-2}$.

Kendall, 1984

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Notation: $[x] \in \mathbb{R}^{2} / \mathbb{R}^{+}$

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.
- Removing translation leaves us with \mathbb{C}^{k-1}.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.
- Removing translation leaves us with \mathbb{C}^{k-1}.
- How to remove scaling and rotation?

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=r e^{i \phi}$, with modulus r and argument ϕ.

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=r e^{i \phi}$, with modulus r and argument ϕ.

Complex Multiplication:

$$
s e^{i \theta} * r e^{i \phi}=(s r) e^{i(\theta+\phi)}
$$

Multiplication by a complex number $s e^{i \theta}$ is equivalent to scaling by s and rotation by θ.

Removing Scale and Translation

Multiplying a centered point set, $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k-1}\right)$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Removing Scale and Translation

Multiplying a centered point set, $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k-1}\right)$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of \mathbf{z} is an equivalence class:

$$
[\mathbf{z}]=\left\{\left(w z_{1}, w z_{2}, \ldots, w z_{k-1}\right): \forall w \in \mathbb{C}\right\}
$$

Removing Scale and Translation

Multiplying a centered point set, $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k-1}\right)$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of \mathbf{z} is an equivalence class:

$$
[\mathbf{z}]=\left\{\left(w z_{1}, w z_{2}, \ldots, w z_{k-1}\right): \forall w \in \mathbb{C}\right\}
$$

This gives complex projective space $\mathbb{C P}^{k-2}$ - much like the sphere comes from equivalence classes of scalar multiplication in \mathbb{R}^{n}.

The Exponential and Log Maps

- The exponential map takes tangent vectors to points along geodesics.
- The length of the tangent vector equals the length along the geodesic segment.
- Its inverse is the log map - it gives distance between points: $d(p, q)=\left\|\log _{p}(q)\right\|$.

Intrinsic Means (Fréchet, 1948)

The intrinsic mean of a collection of points x_{1}, \ldots, x_{N} on a metric space M is

$$
\mu=\arg \min _{x \in M} \sum_{i=1}^{N} d\left(x, x_{i}\right)^{2}
$$

If M is a Riemannian manifold, d is geodesic distance.

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Principal Geodesic Analysis

Linear Statistics (PCA)

PGA of Kidney

Mode 1

Mode 2

Mode 3

Robust Statistics: Motivation

- The mean is overly influenced by outliers due to sum-of-squares.
- Robust statistical description of shape or other manifold data.
- Deal with outliers due to imaging noise or data corruption.
- Misdiagnosis, segmentation error, or outlier in a population study.

Mean vs. Median in \mathbb{R}^{n}

Mean: least-squares problem

$$
\mu=\arg \min _{x \in \mathbb{R}^{n}} \sum\left\|x-x_{i}\right\|^{2}
$$

Closed-form solution (arithmetic average)

Mean vs. Median in \mathbb{R}^{n}

Mean: least-squares problem

$$
\mu=\arg \min _{x \in \mathbb{R}^{n}} \sum\left\|x-x_{i}\right\|^{2}
$$

Closed-form solution (arithmetic average)

Geometric Median, or Fermat-Weber Point:

$$
m=\arg \min _{x \in \mathbb{R}^{n}} \sum\left\|x-x_{i}\right\|
$$

No closed-form solution

Weiszfeld Algorithm in \mathbb{R}^{n}

- Gradient descent on sum-of-distance:

$$
\begin{aligned}
m_{k+1} & =m_{k}-\alpha G_{k}, \\
G_{k} & =\sum_{i \in I_{k}} \frac{m_{k}-x_{i}}{\left\|x_{i}-m_{k}\right\|} /\left(\sum_{i \in I_{k}}\left\|x_{i}-m_{k}\right\|^{-1}\right)
\end{aligned}
$$

- Step size: $0<\alpha \leq 2$
- Exclude singular points: $I_{k}=\left\{i: m_{k} \neq x_{i}\right\}$
- Weiszfeld (1937), Ostresh (1978)

Geometric Median on a Manifold

The geometric median of data $x_{i} \in M$ is the point that minimizes the sum of geodesic distances:

$$
m=\arg \min _{x \in M} \sum_{i=1}^{N} d\left(x, x_{i}\right)
$$

Fletcher, et al. CVPR 2008 and Neurolmage 2009.

Weiszfeld Algorithm for Manifolds

Gradient descent:

$$
\begin{aligned}
m_{k+1} & =\operatorname{Exp}_{m_{k}}\left(\alpha v_{k}\right), \\
v_{k} & =\sum_{i \in I_{k}} \frac{\log _{m_{k}}\left(x_{i}\right)}{d\left(m_{k}, x_{i}\right)} /\left(\sum_{i \in I_{k}} d\left(m_{k}, x_{i}\right)^{-1}\right)
\end{aligned}
$$

Example: Rotations

Input data: 20 random rotations

Outlier set: random, rotated 90°

Example: Rotations

Median

O outliers 5 outliers 10 outliers 15 outliers

Example on Kendall Shape Spaces

Outliers
Hand shapes

Example on Kendall Shape Spaces

Mean:
\# Outliers:

Example on Kendall Shape Spaces

Mean:

12

Median:

Image Metamorphosis

- Metric between images
- Includes both deformation and intensity change

$$
U\left(v_{t}, I_{t}\right)=\int_{0}^{1}\left\|v_{t}\right\|_{V}^{2} d t+\frac{1}{\sigma^{2}} \int_{0}^{1}\left\|\frac{d I_{t}}{d t}+\left\langle\nabla I_{t}, v_{t}\right\rangle\right\|_{L^{2}}^{2} d t
$$

Image Metamorphosis

- Metric between images
- Includes both deformation and intensity change

$$
U\left(v_{t}, I_{t}\right)=\int_{0}^{1}\left\|v_{t}\right\|_{V}^{2} d t+\frac{1}{\sigma^{2}} \int_{0}^{1}\left\|\frac{d I_{t}}{d t}+\left\langle\nabla I_{t}, v_{t}\right\rangle\right\|_{L^{2}}^{2} d t
$$

Example: Metamorphosis

Median Atlas

Describing Shape Change

- How does shape change over time?
- Changes due to growth, aging, disease, etc.
- Example: 100 healthy subjects, 20-80 yrs. old

- We need regression of shape!

Regression on Manifolds

Given:

Manifold data: $y_{i} \in M$ Scalar data: $x_{i} \in \mathbb{R}$

Regression on Manifolds

Given:

Manifold data: $y_{i} \in M$ Scalar data: $x_{i} \in \mathbb{R}$

Regression on Manifolds

Given:

Manifold data: $y_{i} \in M$ Scalar data: $x_{i} \in \mathbb{R}$

Want:

Relationship $f: \mathbb{R} \rightarrow M$
"how x explains y "

Parametric vs. Nonparametric Regression

Linear Regression

Kernel Regression

Kernel Regression (Nadaraya-Watson)

Define regression function through weighted averaging:

$$
\begin{gathered}
f(t)=\sum_{i=1}^{N} w_{i}(t) Y_{i} \\
w_{i}(t)=\frac{K_{h}\left(t-T_{i}\right)}{\sum_{i=1}^{N} K_{h}\left(t-T_{i}\right)}
\end{gathered}
$$

Example: Gray Matter Volume

Gray Matter Volume

$$
w_{i}(t)=\frac{K_{h}\left(t-T_{i}\right)}{\sum_{i=1}^{N} K_{h}\left(t-T_{i}\right)}
$$

Kernel Width=6; Sample Size=50

$$
f(t)=\sum_{i=1}^{N} w_{i}(t) Y_{i}
$$

Manifold Kernel Regression

Using Fréchet weighted average:

$$
\hat{m}_{h}(t)=\arg \min _{y} \sum_{i=1}^{N} w_{i}(t) d\left(y, Y_{i}\right)^{2}
$$

Davis, et al. ICCV 2007

Geodesic Regression

- Generalization of linear regression.
- Find best fitting geodesic to the data $\left(x_{i}, y_{i}\right)$.
- Least-squares problem:

$$
\begin{gathered}
E(p, v)=\frac{1}{2} \sum_{i=1}^{N} d\left(\operatorname{Exp}\left(p, x_{i} v\right), y_{i}\right)^{2} \\
(\hat{p}, \hat{v})=\arg \min _{(p, v) \in T M} E(p, v)
\end{gathered}
$$

Geodesic Regression

Experiment: Corpus Callosum

- The corpus callosum is the main interhemispheric white matter connection
- Known volume decrease with aging
- 32 corpus callosi segmented from OASIS MRI data
- Point correspondences generated using ShapeWorks www.sci.utah.edu/software/

The Tangent Bundle, $T M$

- Space of all tangent vectors (and their base points)
- Has a natural metric, called Sasaki metric
- Can compute geodesics, distances between tangent vectors

Longitudinal Models

Individual geodesic trends:

$$
Y_{i}=\operatorname{Exp}\left(\operatorname{Exp}\left(p_{i}, X_{i} u_{i}\right), \epsilon_{i}\right)
$$

Average group trend (in TM):

$$
\left(p_{i}, u_{i}\right)=\operatorname{Exp}_{S}\left((\alpha, \beta),\left(v_{i}, w_{i}\right)\right)
$$

Muralidharan \& Fletcher, CVPR 2012

Longitudinal Corpus Callosum Experiment

- 12 subjects with dementia, 11 healthy controls
- 3 time points each, spanning 6 years

Healthy Controls

Dementia Patients

Statistically significant: $p=0.027$

Open Problems

Open Problems

- Estimator properties: consistency, efficiency

Open Problems

- Estimator properties: consistency, efficiency
- Approximation quality (e.g., dimensionality reduction)

Open Problems

- Estimator properties: consistency, efficiency
- Approximation quality (e.g., dimensionality reduction)
- Clustering, classification

Open Problems

- Estimator properties: consistency, efficiency
- Approximation quality (e.g., dimensionality reduction)
- Clustering, classification
- Sparsity-like principles

Acknowledgements

Students:

- Prasanna Muralidharan
- Nikhil Singh

Collaborators:

- Sarang Joshi
- Steve Pizer (UNC)
- Suresh Venkatasubramanian $\stackrel{B r a d}{ }$ Davis (Kitware)

Funding:

- NSF CAREER 1054057
- NIH R01 EB007688-01A1

