


Algorithmic vs. Statistical Perspectives 

Computer Scientists  
•  Data: are a record of everything that happened.  
•  Goal: process the data to find interesting patterns and associations. 
•  Methodology: Develop approximation algorithms under different 
models of data access since the goal is typically computationally hard. 

Statisticians (and Natural Scientists, etc) 
•  Data: are a particular random instantiation of an underlying process 
describing unobserved patterns in the world. 
•  Goal: is to extract information about the world from noisy data. 
•  Methodology: Make inferences (perhaps about unseen events) by 
positing a model that describes the random variability of the data 
around the deterministic model.  

Lambert (2000); Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis”  (2010)   



Perspectives are NOT incompatible 

•  Statistical/probabilistic ideas are central to recent work on 
developing improved randomized algorithms for matrix problems. 

•  Intractable optimization problems on graphs/networks yield to 
approximation when assumptions are made about network 
participants. 

•  In boosting (a statistical technique that fits an additive model 
by minimizing an objective function with a method such as 
gradient descent), the computation parameter (i.e., the number 
of iterations) also serves as a regularization parameter. 



But they are VERY different paradigms 

Statistics, natural sciences, scientific computing, etc:  
•  Problems often involve computation, but the study of computation 
per se is secondary 
•  Only makes sense to develop algorithms for well-posed* problems 
•  First, write down a model, and think about computation later 

Computer science: 
•  Easier to study computation per se in discrete settings, e.g., 
Turing machines, logic, complexity classes  
•  Theory of algorithms divorces computation from data 
•  First, run a fast algorithm, and ask what it means later 

*Solution exists, is unique, and varies continuously with input data 



How do we view BIG data? 



Anecdote 1:  
Randomized Matrix Algorithms 

How to “bridge the gap”? 
•  decouple randomization from linear algebra 

•  importance of statistical leverage scores! 

Theoretical origins 
•  theoretical computer 
science, convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

Practical applications 
•  NLA, ML, statistics, data 
analysis, genetics, etc 

•  Fast JL transform 

•  Relative-error algs 

•  Numerically-stable algs 

•  Good statistical properties 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Mahoney “Randomized Algorithms for Matrices and Data” (2011)   



Anecdote 2:  
Communities in large informatics graphs 

People imagine social 
networks to look like: 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)   

How do we know this plot is “correct”?  
•  (since computing conductance is intractable) 
•  Algorithmic Result (ensemble of sets returned by different approximation 
algorithms are very different) 

•  Statistical Result (Spectral provides more meaningful communities than flow)  

•  Lower Bound Result; Structural Result; Modeling Result; Etc. 

Real social networks 
actually look like: 

Size-resolved conductance 
(degree-weighted 
expansion) plot looks like: 

Data are expander-like 
at large size scales !!! 

There do not exist good large 
clusters in these graphs !!! 



Lessons from the anecdotes 

We are being forced to engineer a union between two very 
different worldviews on what are fruitful ways to view the data 
•  in spite of our best efforts not to 

Often fruitful to consider the statistical properties implicit in 
worst-case algorithms 
•  rather that first doing statistical modeling and then doing applying a 
computational procedure as a black box 

•  for both anecdotes, this was essential for leading to “useful theory” 

How to extend these ideas to “bridge the gap” b/w the theory 
and practice of MMDS (Modern Massive Data Set) analysis. 

•  QUESTION: Can we identify a/the concept at the heart of 
the algorithmic-statistical disconnect and then drill-down on it? 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)   



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data, algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three random-walk-based procedures (heat kernel, PageRank, truncated 
lazy random walk) are implicitly solving a regularized optimization exactly! 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 

Weakly-local and strongly-local graph partitioning methods 
•  Operationally like L1-regularization and already used in practice!  
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Thoughts on models of data (1 of 2) 
Data are whatever data are 
•  records of banking/financial transactions, hyperspectral medical/astronomical 
images, electromagnetic signals in remote sensing applications, DNA microarray/
SNP measurements, term-document data, search engine query/click logs, user 
interactions on social networks, corpora of images, sounds, videos, etc. 

To do something useful, you must model the data 
Two criteria when choosing a data model 
•  (data acquisition/generation side): want a structure that is 
“close enough” to the data that you don’t do too much “damage” 
to the data 

•  (downstream/analysis side): want a structure that is at a 
“sweet spot” between descriptive flexibility and algorithmic 
tractability 



Thoughts on models of data (2 of 2) 
Examples of data models: 
•  Flat tables and the relational model: one or more two-dimensional 
arrays of data elements, where different arrays can be related by 
predicate logic and set theory. 

•  Graphs, including trees and expanders:  G=(V,E), with a set of 
nodes V that represent “entities” and edges E that represent 
“interactions” between pairs of entities. 

•  Matrices, including SPSD matrices:  m “objects,” each of which is 
described by n “features,” i.e., an n-dimensional Euclidean vector, 
gives an m x n matrix A. 

Much modern data are relatively-unstructured; matrices and graphs are 
often useful, especially when traditional databases have problems. 



Relationship b/w algorithms and data (1 of 3) 

Before the digital computer: 
•  Natural sciences rich source of problems, statistical methods developed 
to solve those problems 

•  Very important notion: well-posed (well-conditioned) problem: solution 
exists, is unique, and is continuous w.r.t. problem parameters 

•  Simply doesn’t make sense to solve ill-posed problems  

Advent of the digital computer: 
•  Split in (yet-to-be-formed field of) “Computer Science”  

•  Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math) 

•  Two very different perspectives on relationship b/w algorithms and data 



Relationship b/w algorithms and data (2 of 3) 

Two-step approach for “numerical” problems 
•  Is problem well-posed/well-conditioned?  

•  If no, replace it with a well-posed problem.  (Regularization!) 

•  If yes, design a stable algorithm.  

View Algorithm A as a function f 
•  Given x, it tries to compute y but actually computes y* 

•  Forward error: Δy=y*-y  

•  Backward error: smallest Δx s.t. f(x+Δx) = y* 

•  Forward error ≤ Backward error * condition number 

•  Backward-stable algorithm provides accurate solution to well-posed problem! 



Relationship b/w algorithms and data (3 of 3) 

One-step approach for study of computation, per se 
•  Concept of computability captured by 3 seemingly-different discrete 
processes (recursion theory, λ-calculus, Turing machine) 

•  Computable functions have internal structure (P vs. NP, NP-hardness, etc.) 

•  Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n), 
or O(n3) vs. O(n log n)) 

Modern Theory of Approximation Algorithms 
•  provides forward-error bounds for worst-cast input 

•  worst case in two senses: (1) for all possible input & (2) i.t.o. relatively-
simple complexity measures, but independent of “structural parameters” 

•  get bounds by “relaxations” of IP to LP/SDP/etc., i.e., a “nicer” place  



Statistical regularization (1 of 3) 
Regularization in statistics, ML, and data analysis 
•  arose in integral equation theory to “solve” ill-posed problems 

•  computes a better or more “robust” solution, so better 
inference  

•  involves making (explicitly or implicitly) assumptions about data 

•  provides a trade-off between “solution quality” versus 
“solution niceness” 

•  often, heuristic approximation procedures have regularization 
properties as a “side effect”  

•  lies at the heart of the disconnect between the “algorithmic 
perspective” and the “statistical perspective” 



Statistical regularization (2 of 3) 
Usually implemented in 2 steps: 
•  add a norm constraint (or “geometric 
capacity control function”) g(x) to 
objective function f(x) 

•  solve the modified optimization problem 

 x’ = argminx f(x) + λ g(x) 

Often, this is a “harder” problem, 
e.g., L1-regularized L2-regression 

 x’ = argminx ||Ax-b||2 + λ ||x||1   



Statistical regularization (3 of 3) 
Regularization is often observed as a side-effect or 
by-product of other design decisions 
•  “binning,” “pruning,” etc. 

•  “truncating” small entries to zero, “early stopping” of iterations 

•  approximation algorithms and heuristic approximations engineers 
do to implement algorithms in large-scale systems 

BIG question: Can we formalize the notion that/when 
approximate computation can implicitly lead to “better” 
or “more regular” solutions than exact computation? 
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Notation for weighted undirected graph 



Approximating the top eigenvector 
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,  
•  Power method starts with v0, and iteratively computes 

 vt+1 = Avt / ||Avt||2   . 

•  Then, vt = Σi γi
t vi -> v1   . 

•  If we truncate after (say) 3 or 10 iterations, still have some mixing 
from other eigen-directions 

What objective does the exact eigenvector optimize? 
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x. 

•  But can also express this as an SDP, for a SPSD matrix X.  

•  (We will put regularization on this SDP!) 



Views of approximate spectral methods 
Three common procedures (L=Laplacian, and M=r.w. matrix): 

•  Heat Kernel: 

•  PageRank: 

•  q-step Lazy Random Walk: 

Question: Do these “approximation procedures” exactly 
optimizing some regularized objective? 



Two versions of spectral partitioning 

VP: 

R-VP: 



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Three simple corollaries 
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy) 

 gives scaled Heat Kernel matrix, with t = η 

FD(X) = -logdet(X) (i.e., Log-determinant) 
 gives scaled PageRank matrix, with t ~ η 

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1) 

 gives Truncated Lazy Random Walk, with λ ~ η 

( F() specifies the algorithm; “number of steps” specifies the η ) 

Answer: These “approximation procedures” compute 
regularized versions of the Fiedler vector exactly! 
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Graph partitioning 
A family of combinatorial optimization problems - want to 
partition a graph’s nodes into two sets s.t.: 
•  Not much edge weight across the cut (cut quality) 

•  Both sides contain a lot of nodes 

Several standard formulations: 
•  Graph bisection (minimum cut with 50-50 balance) 

•  β-balanced bisection (minimum cut with 70-30 balance) 

•  cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion) 

•  cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts) 

All of these formalizations of the bi-criterion are NP-hard! 



Networks and networked data 

Interaction graph model of 
networks:   
•  Nodes represent “entities” 
•  Edges represent “interaction” 
between pairs of entities 

Lots of “networked” data!! 
•  technological networks 

–  AS, power-grid, road networks 
•  biological networks 

–  food-web, protein networks 
•  social networks 

–  collaboration networks, friendships 
•  information networks 

–  co-citation, blog cross-postings, 
advertiser-bidded phrase graphs... 

•  language networks 
–  semantic networks... 

•  ... 



Social and Information Networks 



Motivation: Sponsored (“paid”) Search 
Text based ads driven by user specified query 

The process: 
•  Advertisers bids on query 
phrases.  

•  Users enter query phrase. 
•  Auction occurs. 

•  Ads selected, ranked, 
displayed. 

•  When user clicks, 
advertiser pays! 



Bidding and Spending Graphs 

Uses of Bidding and Spending 
graphs: 
•  “deep” micro-market identification. 

•  improved query expansion. 

More generally, user segmentation 
for behavioral targeting.  

A “social network” with “term-document” aspects.  



Micro-markets in sponsored search 

10 million keywords 
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videos 

What is the CTR and 
advertiser ROI  of sports 

gambling keywords?  

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.  
Ques: Is this even possible? 



What do these networks “look” like?  



The “lay of the land” 

Spectral methods* - compute eigenvectors of 
associated matrices 

Local improvement - easily get trapped in local minima, 
but can be used to clean up other cuts 

Multi-resolution - view (typically space-like graphs) at 
multiple size scales 

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas 

*Comes with strong underlying theory to guide heuristics. 



Comparison of “spectral” versus “flow” 
Spectral: 
•  Compute an eigenvector 

•  “Quadratic” worst-case bounds 

•  Worst-case achieved -- on “long 
stringy” graphs 

•  Worse-case is “local” property 

•  Embeds you on a line (or Kn) 

Flow: 
•  Compute a LP 

•  O(log n) worst-case bounds 

•  Worst-case achieved -- on 
expanders 

•  Worst case is “global” property 

•  Embeds you in L1 

Two methods -- complementary strengths and weaknesses 

•  What we compute is determined at least as much by as the 
approximation algorithm as by objective function. 



Explicit versus implicit geometry 

Explicitly-
imposed 
geometry 
•  Traditional 
regularization 
uses explicit 
norm constraint 
to make sure 
solution vector 
is “small” and 
not-too-complex  

(X,d) (X’,d’) 

x 

y 
d(x,y) f 

f(x) 

f(y) 

Implicitly-imposed 
geometry 
•  Approximation algorithms 
implicitly embed the data in a 
“nice” metric/geometric place 
and then round the solution. 



Regularized and non-regularized communities (1 of 2)  

•  Metis+MQI - a Flow-based method 
(red) gives sets with better 
conductance. 

•  Local Spectral (blue) gives tighter 
and more well-rounded sets. 

External/internal conductance 

Diameter of the cluster Conductance of  bounding cut 

Local Spectral 

Connected 

Disconnected 

Lower is good 



Regularized and non-regularized communities (2 of 2)  
Two ca. 500 node communities from Local Spectral Algorithm:  

Two ca. 500 node communities from Metis+MQI:  
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Computing locally-biased partitions 

Often want clusters “near” a pre-specified set of nodes: 
•  Large social graphs have good small clusters, don’t have good large clusters 

•  Might have domain knowledge, so find “semi-supervised” clusters 

•  As algorithmic primitives, e.g., to solve linear equations fast. 



Recall global spectral graph partitioning 

•  Relaxation of: 
The basic optimization 
problem: 

•  Solvable via the eigenvalue 
problem: 

•  Sweep cut of second eigenvector 
yields: 

Idea to compute locally-biased partitions: 
•  Modify this objective with a locality constraint 
•  Show that some/all of these nice properties still hold locally 



Local spectral partitioning ansatz 

Primal program: Dual program: 

Interpretation: 
•  Find a cut well-correlated with 
the seed vector s. 

•  If s is a single node, this relaxes: 

Interpretation: 
•  Embedding a combination of 
scaled complete graph Kn and 
complete graphs T and T (KT and 
KT) - where the latter encourage 
cuts near (T,T). 

Mahoney, Orecchia, and Vishnoi (2010) 



Main theoretical results 

Theorem: If x* is an optimal solution to LocalSpectral, 

(*) it is a Generalized Personalized PageRank vector, and 
can be computed as solution to a set of linear equations; 

(*) one can find a cut of conductance ≤ 8λ(G,s,κ) in time 
O(n lg n) with sweep cut of x*; 

(*) For all sets of nodes T s.t. κ’ :=<s,sT>D
2 , we have: φ(T) 

≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) if κ’ ≤ κ . 

Mahoney, Orecchia, and Vishnoi (2010) 

Lower bound: Spectral 
version of flow-
improvement algs. 

Upper bound, as usual from 
sweep cut & Cheeger. 

Fast running time 
guarantee. 



Illustration on small graphs 
•  Similar results if 
we do local random 
walks, truncated 
PageRank, and heat 
kernel diffusions. 

•  Often, it finds 
“worse” quality but 
“nicer” partitions 
than flow-improve 
methods. (Tradeoff 
we’ll see later.) 

Mahoney, Orecchia, and Vishnoi (2010) 



A somewhat different approach 

Strongly-local spectral methods  
 ST04: truncated “local”  random walks to compute locally-biased cut  

 ACL06: approximate locally-biased PageRank vector computations  

 Chung08: approximate heat-kernel computation to get a vector  

These are the diffusion-based procedures  
 that we saw before  

 except truncate/round/clip/push small things to zero 
 starting with localized initial condition 

Also get provably-good local version of global spectral  



What’s the connection? 

“Optimization” approach: 

•  Well-defined objective f 

•  Weakly local (touch all 
nodes), so good for medium-
scale problems 

•  Easy to use 

“Operational” approach*: 

•  Very fast algorithm  

•  Strongly local (clip/truncate 
small entries to zero), good 
for large-scale 

•  Very difficult to use 

* Informally, optimize f+λg (... almost formally!): steps are structurally-similar to the 
steps of how, e.g., L1-regularized L2 regression algorithms, implement regularization 

More importantly,  

•  This “operational” approach is already being adopted in PODS/
VLDB/SIGMOD/KDD/WWW environments! 

•  Let’s make the regularization explicit—and know what we compute!  



Looking forward ... 

A common modus operandi in many (really*) large-scale applications is: 
•  Run a procedure that bears some resemblance to the procedure you 
would run if you were to solve a given problem exactly 

•  Use the output in a way similar to how you would use the exact solution, 
or prove some result that is similar to what you could prove about the 
exact solution.  

BIG Question: Can we make this more principled?  E.g., can we 
“engineer” the approximations to solve (exactly but implicitly) some 
regularized version of the original problem---to do large scale 
analytics in a statistically more principled way? 

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, etc. 



Conclusions 

Regularization is: 
•  absent from CS, which historically has studied computation per se 

•  central to nearly area that applies algorithms to noisy data  

•  gets at the heart of the algorithmic-statistical “disconnect” 
Approximate computation, in and of itself, can implicitly regularize: 

•  Theory & the empirical signatures in matrix and graph problems 

•  Solutions of approximation algorithms don’t need to be something we 
“settle for,” they can be “better” than the “exact” solution 

In very large-scale analytics applications: 
•  Can we “engineer” database operations so “worst-case” approximation 
algorithms exactly solve regularized versions of original problem? 

•  I.e., can we get best of both worlds for very large-scale analytics? 



MMDS Workshop on  
“Algorithms for Modern Massive Data Sets” 

(http://mmds.stanford.edu) 

at Stanford University, July 10-13, 2012 

Objectives: 

-  Address algorithmic, statistical, and mathematical challenges in modern statistical 
data analysis. 

-  Explore novel techniques for modeling and analyzing massive, high-dimensional, and 
nonlinearly-structured data.  

- Bring together computer scientists, statisticians, mathematicians, and data analysis 
practitioners to promote cross-fertilization of ideas. 

Organizers: M. W. Mahoney, A. Shkolnik, G. Carlsson, and P. Drineas, 

Registration is available now! 


