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Proximity Searching

Proximity searching:

A set of related geometric retrieval problems that involve finding the
objects close to a given query object.

Given an n-element set P of points in a metric space. Will assume that
the space is a vector space of low-dimension with a Minkowski norm.

Nearest neighbor searching: Given a query point q, find the closest
point of P to q

(Bounded) Range searching: Given a bounded query range Q,
count/report the points of P ∩ Q
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Proximity Searching: Variants

Variations and issues:

Nearest-Neighbor Searching:

k-nearest neighbors
high dimensions (avoid exponential dependencies in dimension)
exploit properties of metric spaces (e.g., doubling dimension)
space-time tradeoffs
non-metric distances (e.g., Bregman Divergence)

Range Searching:

range emptiness
more space-time tradeoffs
semigroup properties (integral: x + y , idempotent: max(x , y))
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Proximity Searching: Applications

Applications:

Pattern recognition and classification

Object recognition in images (SIFT descriptors [Lowe 1999, 2004])

Content-based retrieval:

Shape matching
Image retrieval
Document retrieval
Biometric identification (face/fingerprint/voice recognition)

Clustering and phylogeny

Data compression (vector quantization)

Physical simulation (collision detection and response)

Computer graphics: photon mapping and point-based modeling

. . . and many more
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The problem that launched a thousand data structures

2-dimensions

Voronoi diagram + point location

Low dimensional vector spaces

grids, kd-trees, quadtrees, R-trees, ...and variants
approximate Voronoi diagrams (AVD) [Har-Peled 2001, Arya et al.
2009]

High dimensional vector spaces

locality sensitive hashing (LSH) [Gionis et al. 1999, Andoni and
Indyk, 2008]

Metric spaces

metric trees and ring separator trees [Indyk and Motwani 1998,
Krauthgamer and Lee 2005] (...and variants)
pivot-based methods (AESA, LAESA, and others) [Brin 1995]
[Chavéz et al. 2001]
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The Structureless Structure

Motivation

“Constant factors” can play a big role in query times. For example,
in O(log n + (1/ε)d) the term (1/ε)d is dominant

Constant factors are often hidden by the memory model

Tree-based data structures (if naively implemented) have notoriously
poor memory access patterns
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Morton Order

Morton Order

Consider a point set P, lying within the unit hypercube [0, 1)d

For each p = (p1, . . . , pd) ∈ Rd , assume its coordinates are given
w -bit binary values pj = 〈0.bj,1 . . . bj,w 〉
Map p to an integer by shuffling the bits of its coordinates,

σ(p) = b1,1 . . . bd,1|b1,2 . . . bd,2| · · · |b1,w . . . bd,w

This is called the Morton order or Z order.
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Linear Quadtree

Linear Quadtree

Sort P by Morton order

Store the points in an array (or any 1-dimensional index)
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Linear Quadtree – Easy Shuffling

Chan’s Shuffle Trick [Chan 2002]

Compare Morton codes without bit manipulation, just exclusive-or!

// tests whether blog2 xc < blog2 yc
f(x , y) { return (x > y ? false : x < (x ⊕ y)) }

// test whether σ(p) < σ(q)
compare(p, q) {

i ← 1
for j ← 2, . . . , d do

if (f (pi ⊕ qi , pj ⊕ qj)) i ← j
return pi < qi

}
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A Minimalist Approach to Nearest Neighbor Searching

Chan [Chan 2006] showed that it is possible to use a Morton-sorted array
(no additional information) to answer approximate nearest neighbor
queries

Apply a random shift to the origin

Query time is O(log n + (1/ε)d) in expectation

Space is O(n), in fact, it is an in-place algorithm

Preprocessing time is O(n log n)

Easily made dynamic (e.g., store in a skip list)

The program is absurdly short – less than 60 lines of C!

Competitive with ANN (my kd-tree implementation) in low dimensions
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Distance Enumeration

Motivations:

Object-recognition: Want a sufficiently large number of high quality
features [Lowe 1999]

Global illumination: Want to collect a sufficiently large number of
sampled photons near a point [Jensen 2001]

Want the k nearest neighbors of q, but want to pick k on the fly
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Distance Enumeration

Distance Enumerator:

Visit the points P in increasing order of distance from a point q

Let Π(q) = 〈π1, . . . , πn〉, where pπk
is q’s kth nearest neighbor

Generate the elements of Π(q) efficiently, one at a time

(c , ε)-Enumerator

After preprocessing P, given a query point q, produces a generator for a
Π′(q) such that:

Successive elements of Π′(q) generated rapidly, e.g., O(log n) time

For 1 ≤ k ≤ n, a (1 + ε) approximation to q’s k-th nearest neighbor
appears among the first c · k elements of Π′
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Priority Search

Build a kd-tree T for P

For each node u, let C (u) be the cell associated with u

Priority Search:

Store the root u of T in a priority queue based on dist(q,C(u))
Repeat until queue is empty:

Extract closest node u from the queue
If u is a leaf then output the associate point
Otherwise, enqueue u’s two children

A (c , ε)-distance enumerator for c = O(1/εd) [Arya et al. 1998]



Introduction Structureless Distance Enumeration ANN via Polytope Membership Conclusions

Priority Search



Introduction Structureless Distance Enumeration ANN via Polytope Membership Conclusions

Priority Search
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Enhancing Robustness

Generate multiple “randomized” trees [Silpa-Anan and Hartley, 2008]

Select splitting axis at random (after PCA)

Rotate the points randomly: O(d2n)

Project the points through a random hyperplane: O(dn)

Generate m such trees and enumerate c points from each

Total time O(c ·m log n)

Cluster-based method [Muja and Lowe 2009]

Preprocessing:

Perform k-means clustering for some k (depending on dimension)
Partition points into subtrees based on these clusters
Recurse

Enumerate by visiting subtrees in order of distance of cluster center
to query point
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Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess
P to answer membership queries:

Given a point q, is q ∈ P?

Assume that dimension d is a constant and P is
given as intersection of n halfspaces

q

P
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Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P’s boundary:

> ε: answer must be correct
≤ ε: either answer is acceptable

1

ε ε

in

out
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Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P’s boundary:

> ε: answer must be correct
≤ ε: either answer is acceptable

1

ε ε

in

out

?
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Split-Reduce

t = 2 Preprocess:

Input P, ε, and desired query time t

Q ← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P

If at most t facets, then Q stores them

Otherwise, subdivide Q and recurse
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Space-Time Tradeoff

Arya et al. prove the following
space-time tradeoff [Arya et al.
2011] for polytope membership
queries

Theorem:

Split-Reduce can answer
ε-approximate polytope
membership queries with

Storage: O(1/ε(d−1)/(1−k/2k ))

Query time: O(1/ε(d−1)/2k
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Approximate Nearest Neighbor (ANN) Searching

Approximate nearest neighbor searching can
be reduced to approximate polytope
membership:

Lift: By lifting, we can reduce nearest
neighbor search to ray shooting to a
polytope

Separate: Partition space into roughly
O(n) cells such that all nearest
neighbors of each cell are of similar
distance (AVD)

Q

BQ
cBQ
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Approximate Nearest Neighbor (ANN) Searching

Space-Time Tradeoffs for ANN Search

Arya, et al. [2009] showed that
ANN queries could be answered in
query time roughly O(1/εd/α) with
storage roughly O(n/εd(1−2/α)), for
α ≥ 2

This is optimal in the extremes

The reduction to polytope
membership queries improves the
tradeoff throughout the spectrum
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Conclusions

Next steps on the quest?

Better analyses of the performance of
methods on realistic data sets

Emphasis on general/flexibile methods
(distance enumeration)

More repositories of good test data

How to explore/visualize/analyze the
structure of multi-dimensional data sets
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