Proximity Searching and the Quest for the Holy
Grail

David M. Mount

Department of Computer Science
University of Maryland, College Park

CG-APT 2012: Algorithms in the Field

Introduction
[Jelelele}

Proximity Searching

Proximity searching:
A set of related geometric retrieval problems that involve finding the
objects close to a given query object.

Given an n-element set P of points in a metric space. Will assume that
the space is a vector space of low-dimension with a Minkowski norm.

@ Nearest neighbor searching: Given a query point g, find the closest
point of P to g

@ (Bounded) Range searching: Given a bounded query range Q,
count/report the points of PN Q

Introduction
[¢] lele]e}

Proximity Searching: Variants

Variations and issues:

@ Nearest-Neighbor Searching:

k-nearest neighbors

high dimensions (avoid exponential dependencies in dimension)
exploit properties of metric spaces (e.g., doubling dimension)
space-time tradeoffs

non-metric distances (e.g., Bregman Divergence)

@ Range Searching:
e range emptiness
@ more space-time tradeoffs
e semigroup properties (integral: x + y, idempotent: max(x,y))

Introduction
[e]e] lele}

Proximity Searching: Applications

Applications:

@ Pattern recognition and classification
@ Object recognition in images (SIFT descriptors [Lowe 1999, 2004])
o Content-based retrieval:

e Shape matching

o Image retrieval

o Document retrieval

o Biometric identification (face/fingerprint/voice recognition)
Clustering and phylogeny

Data compression (vector quantization)

Physical simulation (collision detection and response)

Computer graphics: photon mapping and point-based modeling

...and many more

Introduction
[e]e]e] lo}

The problem that launched a thousand data structures

@ 2-dimensions
e Voronoi diagram + point location

Low dimensional vector spaces
e grids, kd-trees, quadtrees, R-trees, ...and variants
o approximate Voronoi diagrams (AVD) [Har-Peled 2001, Arya et al.
2009]
@ High dimensional vector spaces
o locality sensitive hashing (LSH) [Gionis et al. 1999, Andoni and
Indyk, 2008]
Metric spaces
o metric trees and ring separator trees [Indyk and Motwani 1998,
Krauthgamer and Lee 2005] (...and variants)
o pivot-based methods (AESA, LAESA, and others) [Brin 1995]
[Chavéz et al. 2001]

Introduction
[e]e]e]e] }

Overview

@ The Structureless Structure
@ Enumerating Distances
@ ANN via Polytope Membership

Introduction
[e]e]e]e] }

Overview

@ The Structureless Structure
@ Enumerating Distances
@ ANN via Polytope Membership

Structureless
®00000

The Structureless Structure

@ “Constant factors” can play a big role in query times. For example,
in O(log n + (1/€)9) the term (1/€) is dominant

o Constant factors are often hidden by the memory model

@ Tree-based data structures (if naively implemented) have notoriously
poor memory access patterns

Structureless
O®0000

Morton Order

Morton Order

o Consider a point set P, lying within the unit hypercube [0, 1)¢

@ For each p=(p1,...,pd) € RY, assume its coordinates are given
w-bit binary values p; = (0.bj1 ... bj,w)

@ Map p to an integer by shuffling the bits of its coordinates,

O’(p) = b1’1 500 bd,1|b1,2 000 bd72| 0G0 |b1’w 000 bd,w

@ This is called the Morton order or Z order.

Structureless
[e]e] le]ele}

Linear Quadtree

Linear Quadtree

@ Sort P by Morton order
@ Store the points in an array (or any 1-dimensional index)

0000 | 0010 | 1000 | 1010

Structureless
00000

Linear Quadtree — Easy Shuffling

Chan’s Shuffle Trick [Chan 2002]

Compare Morton codes without bit manipulation, just exclusive-or!

// tests whether |log, x| < |log, v
f(x,y) { return (x > y ? false : x < (x @ y)) }

// test whether o(p) < o(q)
compare(p, q) {
i+ 1
for j<2,...,d do
if (F(pi © qi,p @ q;)) i < J
return p; < q;

Structureless
0O000e0

A Minimalist Approach to Nearest Neighbor Searching

Chan [Chan 2006] showed that it is possible to use a Morton-sorted array
(no additional information) to answer approximate nearest neighbor
queries

@ Apply a random shift to the origin

o Query time is O(log n + (1/¢)?) in expectation

@ Space is O(n), in fact, it is an in-place algorithm

@ Preprocessing time is O(nlog n)

e Easily made dynamic (e.g., store in a skip list)

The program is absurdly short — less than 60 lines of C!

Competitive with ANN (my kd-tree implementation) in low dimensions

Structureless
O0000e

Overview

@ The Structureless Structure
@ Enumerating Distances

@ ANN via Polytope Membership

Distance Enumeration
®00000

Distance Enumeration

Motivations:

@ Object-recognition: Want a sufficiently large number of high quality
features [Lowe 1999]

@ Global illumination: Want to collect a sufficiently large number of
sampled photons near a point [Jensen 2001]

Want the k nearest neighbors of g, but want to pick k on the fly

Distance Enumeration
O@0000

Distance Enumeration

Distance Enumerator:
@ Visit the points P in increasing order of distance from a point g
o Let MN(qg) = (m1,...,m,), where pr, is g's kth nearest neighbor

o Generate the elements of I(q) efficiently, one at a time

(¢,e)-Enumerator

After preprocessing P, given a query point g, produces a generator for a
M’(q) such that:
@ Successive elements of ’(q) generated rapidly, e.g., O(log n) time

@ For 1 < k <n, a(l+¢) approximation to g's k-th nearest neighbor
appears among the first ¢ - k elements of I’

Distance Enumeration
[e]e] lelele]

Priority Search

Build a kd-tree T for P

For each node u, let C(u) be the cell associated with u

(]

Priority Search:

o Store the root u of T in a priority queue based on dist(q, C(u))
o Repeat until queue is empty:

@ Extract closest node u from the queue
o If uis a leaf then output the associate point
o Otherwise, enqueue u's two children

o A (c,e)-distance enumerator for c = O(1/e%) [Arya et al. 1998]

Distance Enumeration
[e]e]e] lele]

Priority Search

a5

Dist fo Polni vs. Dist to Cell

Dimension =2

Distance to Pm‘r'n}]
P N VT BT
T

o
o
T

1 L

w
n

05 1
Distance to Cell

Dist 1o Point vs. Dist to Cell
Dimension =10

o
N_a_®
T T

o

Distance to Point

05 1
Distance to Cell

Distto Pomi vs. Dist to Cell

Dimension = &

Distance to Point
- n ©
PP R R R
T

[od
o

0.5 1
Distance to Cell

Distto Point vs. Dist to Cell
Dimension =20

I
Ve

Distance to Point
o

05 1
Distance to Cell

Distance Enumeration
[e]e]e] lele]

Priority Search

a5

n
o
T

Distance to Paint

o
T

Dist fo Polni vs. Dist to Cell
Dimension =2

23
T

1)
T

o
o
T

L

w
n

05 1
Distance to Cell

Dist 1o Point vs. Dist to Cell
Dimension =10

o
N_a_®
T T

o

Distance to Point

5
Distance to Cell

Distto Pomi vs. Dist to Cell

B Dimension = &
3. T T

Distance to Point

0.5 1
Distance to Cell

Distto Point vs. Dist to Cell
Dimension =20

[
o

[N

Distance to Point
o

05 1
Distance to Cell

Distance Enumeration
O000e0

Enhancing Robustness

Generate multiple “randomized” trees [Silpa-Anan and Hartley, 2008]
Select splitting axis at random (after PCA)

Rotate the points randomly: O(d?n)

Project the points through a random hyperplane: O(dn)

Generate m such trees and enumerate ¢ points from each

Total time O(c - mlog n)
Cluster-based method [Muja and Lowe 2009]

@ Preprocessing:

o Perform k-means clustering for some k (depending on dimension)
e Partition points into subtrees based on these clusters
o Recurse

@ Enumerate by visiting subtrees in order of distance of cluster center
to query point

Distance Enumeration
O0000e

Overview

@ The Structureless Structure
@ Enumerating Distances
@ ANN via Polytope Membership

ANN via Polytope Membership
®00000

Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess q
P to answer membership queries:

Given a point q, is g € P?

@ Assume that dimension d is a constant and P is
given as intersection of n halfspaces

ANN via Polytope Membership
0O@0000

Approximate Polytope Membership Queries

Approximate Version

@ An approximation parameter € is given
(at preprocessing time)
@ Assume the polytope has diameter 1
o If the query point’s distance from P’s boundary:

e > g: answer must be correct
o < e: either answer is acceptable

ANN via Polytope Membership
0O@0000

Approximate Polytope Membership Queries

Approximate Version

@ An approximation parameter € is given
(at preprocessing time)
@ Assume the polytope has diameter 1
o If the query point’s distance from P’s boundary:

e > g: answer must be correct
o < e: either answer is acceptable

ANN via Polytope Membership
[e]e] le]ele}

Split-Reduce

Preprocess:

@ Input P, €, and desired query time ¢t
@ @ <+ unit hypercube
@ Split-Reduce(Q)

ANN via Polytope Membership
[e]e] le]ele}

Split-Reduce

@ Input P, €, and desired query time ¢t

@ @ <+ unit hypercube
@ Split-Reduce(Q)

Split-Reduce(Q)
@ Find an e-approximation of @ N P

@ If at most t facets, then @ stores them

@ Otherwise, subdivide @ and recurse

ANN via Polytope Membership
[e]e] le]ele}

Split-Reduce

@ Input P, €, and desired query time ¢t

K @ @ <+ unit hypercube

@ Split-Reduce(Q)

Split-Reduce(Q)
@ Find an e-approximation of @ N P

@ If at most t facets, then @ stores them

@ Otherwise, subdivide @ and recurse

ANN via Polytope Membership
[e]e] le]ele}

Split-Reduce

@ Input P, €, and desired query time ¢t

K @ @ <+ unit hypercube

@ Split-Reduce(Q)

Split-Reduce(Q)
@ Find an e-approximation of @ N P

@ If at most t facets, then @ stores them

@ Otherwise, subdivide @ and recurse

Space-Time Tradeoff

Arya et a/' pI’OVE the fOHOWing 12 t\\ (a) Tradeoffs for Polytope Membership
space-time tradeoff [Arya et al. S Simple algorithm - - -
2011] for polytope membership 1 . Chlit-Reduce 7
queries Ky
J;j 1/4]

Split-Reduce can answer z

g-approximate polytope <

membership queries with &

(d—1)/(1—k/2") A8 o

Storage: O(1/e) '
Query time: O(l/e(d_l)/zk) 2 5/8 314 1

x: Storage is 1/51(‘1*0(1»

ANN via Polytope Membership
000080

Approximate Nearest Neighbor (ANN) Searching

Approximate nearest neighbor searching can
be reduced to approximate polytope
membership:

o Lift: By lifting, we can reduce nearest
neighbor search to ray shooting to a
polytope

@ Separate: Partition space into roughly
O(n) cells such that all nearest
neighbors of each cell are of similar
distance (AVD)

Approximate Nearest Neighbor (ANN) Searching

Space-Time Tradeoffs for ANN Search =z

@ Arya, et al. [2009] showed that
ANN queries could be answered in
query time roughly O(1/£9/®) with
storage roughly O(n/e?(1=2/)), for
a>2

N (b) Tradeoffs for ANN search

N Prior upper bound [AMMO09] - ~ =
: New upper bound ——
Lower bound [AMMO9]

N
N

@ This is optimal in the extremes

@ The reduction to polytope
membership queries improves the

14 1/2 11/16 1
tradeoff throughout the spectrum ! o)
& P x: Storage is n/a‘“diom)

2
=
2

y: Query time is O(logn) + 1/8‘”“40(1
o E

clusions
[Je]elele}

Conclusions

Next steps on the quest?
@ Better analyses of the performance of
methods on realistic data sets

@ Emphasis on general/flexibile methods
(distance enumeration)

@ More repositories of good test data

@ How to explore/visualize/analyze the
structure of multi-dimensional data sets

Conclusions
[e] Jele]e}

Acknowledgements

@ The work on polytope approximation is joint with Sunil Arya and
Guilherme da Fonseca

@ | would also like to acknowledge the support of NSF grant
CCR-0635099 and ONR grant N00014-08-1-1015

Conclusions
[e]e] le]e}

Bibliography

@ M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic
algorithm configuration. Int. Conf. on Computer Vision Theory and App.,
(VISSAPP’09), 2009, 331-340.

@ C. Silpa-Anan and R. Hartley, Optimised KD-trees for fast image descriptor
matching. Proc. CVPR, 2008, 1-8.

@ A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51, 2008, 117-122.

@ S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching in fixed
dimensions. J. ACM, 45, 1998, 891-923.

@ S. Arya, T. Malamatos, and D. M. Mount, Space-Time Tradeoffs for
Approximate Nearest Neighbor Searching. J. ACM, 57, 2009, 1-54.

@ S. Arya, G. D. da Fonseca, and D. M. Mount, Approximate Polytope
Membership Queries. Proc. 43rd Symp. on Theory of Comput., 2011, 579-586.

@ S. Brin, Near neighbor search in large metric spaces. Proc. 21st VLDB Conf.,
1995, 574-584.

Conclusions
[e]e]e] e}

Bibliography

@ T. M. Chan, Closest-point problems simplified on the RAM. Proc. 13th
ACM-SIAM SODA, 2002, 472-473.

@ T. M. Chan, A minimalist implementation of an approximate nearest neighbor
algorithm in fixed dimensions. unpublished manuscript, 2006.

@ E. Chéavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin, Searching in
Metric Spaces. ACM Comput. Surveys, 33, 2001, 273-321.

@ A. Gionis, P. Indyk, R. Motwani. Similarity search in high dimensions via
hashing. Proc. 25th VLDB Conf., 1999, 518-529.

@ S. Har-Peled. A replacement for Voronoi diagrams of near linear size. Proc.
42nd Annu. IEEE Sympos. Found. Comput. Sci., 2001, 94-103.

@ P. Indyk, and R. Motwani, Approximate nearest neighbors: towards removing the
curse of dimensionality. Proc. 30th Symp. on Theory of Comput., 1998,
604—-613.

@ H. W Jensen, Realistic Image Synthesis Using Photon Mapping. A.K. Peters,
2001

Conclusions
[e]e]ele] }

Bibliography

@ R. Krauthgamer and J. R. Lee, The black-box complexity of nearest neighbor
search. Theoret. Comput. Sci., 348, 2005, 129-366.

@ D. G. Lowe, Object recognition from local scale-invariant features. Proc. Int.
Conf. on Computer Vision, 2, 1999, 1150-1157.

@ D. G. Lowe, Distinctive image features from scale-invariant keypoints Int. J. of
Computer Vision, 60, 2004, 91-110.

@ M. L. Mico, J. Oncina, and E. Vidal, A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15, 1994, 9-17

	Introduction
	Structureless
	Distance Enumeration
	ANN via Polytope Membership
	Conclusions

