| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |

# Proximity Searching and the Quest for the Holy Grail

David M. Mount

Department of Computer Science University of Maryland, College Park

CG-APT 2012: Algorithms in the Field

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| ●0000        | 000000        | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |

# **Proximity Searching**

### Proximity searching:

A set of related geometric retrieval problems that involve finding the objects close to a given query object.

Given an n-element set P of points in a metric space. Will assume that the space is a vector space of low-dimension with a Minkowski norm.

- Nearest neighbor searching: Given a query point q, find the closest point of P to q
- (Bounded) Range searching: Given a bounded query range Q, count/report the points of  $P \cap Q$

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 0000         | 000000        | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |

# Proximity Searching: Variants

Variations and issues:

- Nearest-Neighbor Searching:
  - k-nearest neighbors
  - high dimensions (avoid exponential dependencies in dimension)
  - exploit properties of metric spaces (e.g., doubling dimension)
  - space-time tradeoffs
  - non-metric distances (e.g., Bregman Divergence)

## • Range Searching:

- range emptiness
- more space-time tradeoffs
- semigroup properties (integral: x + y, idempotent: max(x, y))

| Introduction |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|--------|----------------------|-----------------------------|-------------|
| 00000        | 000000 | 000000               | 000000                      | 00000       |
|              |        |                      |                             |             |
|              |        |                      |                             |             |

# Proximity Searching: Applications

## Applications:

- Pattern recognition and classification
- Object recognition in images (SIFT descriptors [Lowe 1999, 2004])
- Content-based retrieval:
  - Shape matching
  - Image retrieval
  - Document retrieval
  - Biometric identification (face/fingerprint/voice recognition)
- Clustering and phylogeny
- Data compression (vector quantization)
- Physical simulation (collision detection and response)
- Computer graphics: photon mapping and point-based modeling

... and many more

| Introduction |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|--------|----------------------|-----------------------------|-------------|
| 00000        | 000000 | 000000               | 000000                      | 00000       |
|              |        |                      |                             |             |

# The problem that launched a thousand data structures

- 2-dimensions
  - Voronoi diagram + point location
- Low dimensional vector spaces
  - grids, kd-trees, quadtrees, R-trees, ...and variants
  - approximate Voronoi diagrams (AVD) [Har-Peled 2001, Arya *et al.* 2009]
- High dimensional vector spaces
  - locality sensitive hashing (LSH) [Gionis et al. 1999, Andoni and Indyk, 2008]
- Metric spaces
  - metric trees and ring separator trees [Indyk and Motwani 1998, Krauthgamer and Lee 2005] (...and variants)
  - pivot-based methods (AESA, LAESA, and others) [Brin 1995] [Chavéz *et al.* 2001]

| Introduction |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|--------|----------------------|-----------------------------|-------------|
| 00000        | 000000 | 000000               | 000000                      | 00000       |
|              |        |                      |                             |             |
|              |        |                      |                             |             |

# **Overview**

- The Structureless Structure
- Enumerating Distances
- ANN via Polytope Membership

| Introduction |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|--------|----------------------|-----------------------------|-------------|
| 00000        | 000000 | 000000               | 000000                      | 00000       |
|              |        |                      |                             |             |
|              |        |                      |                             |             |

# **Overview**

## • The Structureless Structure

- Enumerating Distances
- ANN via Polytope Membership

|       | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|---------------|----------------------|-----------------------------|-------------|
| 00000 | 00000         | 000000               | 000000                      | 00000       |
|       |               |                      |                             |             |

# The Structureless Structure

#### Motivation

- "Constant factors" can play a big role in query times. For example, in O(log n + (1/ε)<sup>d</sup>) the term (1/ε)<sup>d</sup> is dominant
- Constant factors are often hidden by the memory model
- Tree-based data structures (if naively implemented) have notoriously poor memory access patterns

|       | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|---------------|----------------------|-----------------------------|-------------|
| 00000 | 00000         | 000000               | 000000                      | 00000       |
|       |               |                      |                             |             |
|       |               |                      |                             |             |

# Morton Order

### Morton Order

- Consider a point set P, lying within the unit hypercube  $[0,1)^d$
- For each  $p = (p_1, \dots, p_d) \in \mathbb{R}^d$ , assume its coordinates are given w-bit binary values  $p_j = \langle 0.b_{j,1} \dots b_{j,w} \rangle$
- Map p to an integer by shuffling the bits of its coordinates,

$$\sigma(p) = b_{1,1} \dots b_{d,1} | b_{1,2} \dots b_{d,2} | \cdots | b_{1,w} \dots b_{d,w}$$

• This is called the Morton order or Z order.

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 00000         | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |

# Linear Quadtree

### Linear Quadtree

- Sort *P* by Morton order
- Store the points in an array (or any 1-dimensional index)





| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |
| Linear (     | Quadtree –    | Easy Shuffling       |                             |             |

## Chan's Shuffle Trick [Chan 2002]

Compare Morton codes without bit manipulation, just exclusive-or!

```
 \begin{array}{l} // \text{ tests whether } \lfloor \log_2 x \rfloor < \lfloor \log_2 y \rfloor \\ f(x, y) \ \{ \text{ return } (x > y \ ? \ false : x < (x \oplus y)) \ \} \\ // \text{ test whether } \sigma(p) < \sigma(q) \\ \text{compare}(p, q) \ \{ \\ i \leftarrow 1 \\ \text{ for } j \leftarrow 2, \dots, d \text{ do} \\ \text{ if } (f(p_i \oplus q_i, p_j \oplus q_j)) \ i \leftarrow j \\ \text{ return } p_i < q_i \\ \} \end{array}
```

|       | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|---------------|----------------------|-----------------------------|-------------|
| 00000 | 000000        | 000000               | 000000                      | 00000       |
|       |               |                      |                             |             |

# A Minimalist Approach to Nearest Neighbor Searching

Chan [Chan 2006] showed that it is possible to use a Morton-sorted array (no additional information) to answer approximate nearest neighbor queries

- Apply a random shift to the origin
- Query time is  $O(\log n + (1/\varepsilon)^d)$  in expectation
- Space is O(n), in fact, it is an in-place algorithm
- Preprocessing time is  $O(n \log n)$
- Easily made dynamic (e.g., store in a skip list)

The program is absurdly short – less than 60 lines of C!

Competitive with ANN (my kd-tree implementation) in low dimensions

| Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|---------------|----------------------|-----------------------------|-------------|
| 000000        |                      |                             |             |
|               |                      |                             |             |
|               |                      |                             |             |

# **Overview**

- The Structureless Structure
- Enumerating Distances
- ANN via Polytope Membership

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        | 000000               | 000000                      | 00000       |
|              |               |                      |                             |             |
|              |               |                      |                             |             |

# **Distance Enumeration**

### Motivations:

- Object-recognition: Want a sufficiently large number of high quality features [Lowe 1999]
- Global illumination: Want to collect a sufficiently large number of sampled photons near a point [Jensen 2001]

Want the k nearest neighbors of q, but want to pick k on the fly

| <u>.</u> .   |               | • •                  |                             |             |
|--------------|---------------|----------------------|-----------------------------|-------------|
|              |               |                      |                             |             |
| 00000        | 000000        | 00000                | 000000                      | 00000       |
| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |

## **Distance Enumeration**

### Distance Enumerator:

- Visit the points P in increasing order of distance from a point q
- Let  $\Pi(q) = \langle \pi_1, \dots, \pi_n \rangle$ , where  $p_{\pi_k}$  is q's kth nearest neighbor
- Generate the elements of  $\Pi(q)$  efficiently, one at a time

## $(c, \varepsilon)$ -Enumerator

After preprocessing P, given a query point q, produces a generator for a  $\Pi'(q)$  such that:

- Successive elements of  $\Pi'(q)$  generated rapidly, e.g.,  $O(\log n)$  time
- For 1 ≤ k ≤ n, a (1 + ε) approximation to q's k-th nearest neighbor appears among the first c ⋅ k elements of Π'

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
|              |               | 000000               |                             |             |
|              |               |                      |                             |             |
|              | <u> </u>      |                      |                             |             |

# Priority Search

- Build a kd-tree T for P
- For each node u, let C(u) be the cell associated with u
- Priority Search:
  - Store the root u of T in a priority queue based on dist(q, C(u))
  - Repeat until queue is empty:
    - Extract closest node *u* from the queue
    - If u is a leaf then output the associate point
    - Otherwise, enqueue *u*'s two children
- A  $(c,\varepsilon)$ -distance enumerator for  $c = O(1/\varepsilon^d)$  [Arya *et al.* 1998]

|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 000000                      | 00000       |
|       |        |                      |                             |             |

# **Priority Search**



|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 000000                      | 00000       |
|       |        |                      |                             |             |

# **Priority Search**



|        |             | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------|-------------|----------------------|-----------------------------|-------------|
| 00000  | 000000      | 000000               | 000000                      | 00000       |
|        |             |                      |                             |             |
| Enhanc | ing Robustr | ness                 |                             |             |

Generate multiple "randomized" trees [Silpa-Anan and Hartley, 2008]

- Select splitting axis at random (after PCA)
- Rotate the points randomly:  $O(d^2n)$
- Project the points through a random hyperplane: O(dn)
- Generate *m* such trees and enumerate *c* points from each
- Total time  $O(c \cdot m \log n)$

Cluster-based method [Muja and Lowe 2009]

- Preprocessing:
  - Perform k-means clustering for some k (depending on dimension)
  - Partition points into subtrees based on these clusters
  - Recurse
- Enumerate by visiting subtrees in order of distance of cluster center to query point

|  | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--|----------------------|-----------------------------|-------------|
|  | 000000               |                             |             |
|  |                      |                             |             |
|  |                      |                             |             |

## **Overview**

- The Structureless Structure
- Enumerating Distances
- ANN via Polytope Membership

 Introduction
 Structureless
 Distance Enumeration
 ANN via Polytope Membership
 Conclusions

 00000
 000000
 000000
 000000
 000000
 000000

# Polytope Membership Queries

#### Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess P to answer membership queries:

Given a point q, is  $q \in P$ ?

• Assume that dimension *d* is a constant and *P* is given as intersection of *n* halfspaces



|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 00000                       | 00000       |
|       |        |                      |                             |             |

# Approximate Polytope Membership Queries

### Approximate Version

- An approximation parameter ε is given (at preprocessing time)
- Assume the polytope has diameter 1
- If the query point's distance from *P*'s boundary:
  - >  $\varepsilon$ : answer must be correct
  - $\leq \varepsilon$ : either answer is acceptable



|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 00000                       | 00000       |
|       |        |                      |                             |             |

# Approximate Polytope Membership Queries

### Approximate Version

- An approximation parameter ε is given (at preprocessing time)
- Assume the polytope has diameter 1
- If the query point's distance from *P*'s boundary:
  - >  $\varepsilon$ : answer must be correct
  - $\leq \varepsilon$ : either answer is acceptable



| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        |                      | 00000                       | 00000       |
| Split-Re     | educe         |                      |                             |             |



### Preprocess:

- Input *P*,  $\varepsilon$ , and desired query time *t*
- $Q \leftarrow$  unit hypercube
- Split-Reduce(Q)

- Find an  $\varepsilon$ -approximation of  $Q \cap P$
- If at most *t* facets, then *Q* stores them
- Otherwise, subdivide Q and recurse

|  | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--|----------------------|-----------------------------|-------------|
|  |                      | 00000                       |             |
|  |                      |                             |             |
|  |                      |                             |             |





### Preprocess:

- Input P,  $\varepsilon$ , and desired query time t
- $Q \leftarrow$  unit hypercube
- Split-Reduce(Q)

- Find an  $\varepsilon$ -approximation of  $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

|  | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--|----------------------|-----------------------------|-------------|
|  |                      | 00000                       |             |
|  |                      |                             |             |
|  |                      |                             |             |





### Preprocess:

- Input P,  $\varepsilon$ , and desired query time t
- $Q \leftarrow$  unit hypercube
- Split-Reduce(Q)

- Find an  $\varepsilon$ -approximation of  $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

|  | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--|----------------------|-----------------------------|-------------|
|  |                      | 00000                       |             |
|  |                      |                             |             |
|  |                      |                             |             |

# Split-Reduce



### Preprocess:

- Input P,  $\varepsilon$ , and desired query time t
- $Q \leftarrow$  unit hypercube
- Split-Reduce(Q)

- Find an  $\varepsilon$ -approximation of  $Q \cap P$
- If at most t facets, then Q stores them
- Otherwise, subdivide Q and recurse

| ~            | <br>          |                      |                             |             |
|--------------|---------------|----------------------|-----------------------------|-------------|
|              |               |                      |                             |             |
|              |               |                      | 000000                      |             |
| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |

## Space-Time Tradeoff

Arya *et al.* prove the following space-time tradeoff [Arya *et al.* 2011] for polytope membership queries

#### Theorem:

Split-Reduce can answer  $\varepsilon$ -approximate polytope membership queries with Storage:  $O(1/\varepsilon^{(d-1)/(1-k/2^k)})$ Query time:  $O(1/\varepsilon^{(d-1)/2^k})$ 



|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 000000                      | 00000       |
|       |        |                      |                             |             |

# Approximate Nearest Neighbor (ANN) Searching

Approximate nearest neighbor searching can be reduced to approximate polytope membership:

- Lift: By lifting, we can reduce nearest neighbor search to ray shooting to a polytope
- Separate: Partition space into roughly *O*(*n*) cells such that all nearest neighbors of each cell are of similar distance (AVD)





|       |        | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|-------|--------|----------------------|-----------------------------|-------------|
| 00000 | 000000 | 000000               | 000000                      | 00000       |
|       |        |                      |                             |             |

# Approximate Nearest Neighbor (ANN) Searching

### Space-Time Tradeoffs for ANN Search

- Arya, et al. [2009] showed that ANN queries could be answered in query time roughly  $O(1/\varepsilon^{d/\alpha})$  with storage roughly  $O(n/\varepsilon^{d(1-2/\alpha)})$ , for  $\alpha \geq 2$
- This is optimal in the extremes
- The reduction to polytope membership queries improves the tradeoff throughout the spectrum



| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
|              |               |                      |                             | 00000       |
|              |               |                      |                             |             |
|              |               |                      |                             |             |

## Conclusions

Next steps on the quest?

- Better analyses of the performance of methods on realistic data sets
- Emphasis on general/flexibile methods (distance enumeration)
- More repositories of good test data
- How to explore/visualize/analyze the structure of multi-dimensional data sets



|      | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|------|----------------------|-----------------------------|-------------|
|      |                      |                             | 00000       |
|      |                      |                             |             |
| <br> |                      |                             |             |

## Acknowledgements

- The work on polytope approximation is joint with Sunil Arya and Guilherme da Fonseca
- I would also like to acknowledge the support of NSF grant CCR-0635099 and ONR grant N00014-08-1-1015

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        | 000000               | 000000                      | 00000       |
| Bibliogra    | aphy          |                      |                             |             |

- M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration. *Int. Conf. on Computer Vision Theory and App.*, (VISSAPP'09), 2009, 331–340.
- C. Silpa-Anan and R. Hartley, Optimised KD-trees for fast image descriptor matching. *Proc. CVPR*, 2008, 1–8.
- A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. *Commun. ACM*, 51, 2008, 117–122.
- S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. *J. ACM*, 45, 1998, 891-923.
- S. Arya, T. Malamatos, and D. M. Mount, Space-Time Tradeoffs for Approximate Nearest Neighbor Searching. J. ACM, 57, 2009, 1–54.
- S. Arya, G. D. da Fonseca, and D. M. Mount, Approximate Polytope Membership Queries. Proc. 43rd Symp. on Theory of Comput., 2011, 579–586.
- S. Brin, Near neighbor search in large metric spaces. *Proc. 21st VLDB Conf.*, 1995, 574-584.

| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |
|--------------|---------------|----------------------|-----------------------------|-------------|
| 00000        | 000000        | 000000               | 000000                      | 000●0       |
| Bibliogra    | aphy          |                      |                             |             |

• T. M. Chan. Closest-point problems simplified on the RAM. Proc. 13th ACM-SIAM SODA, 2002, 472-473.

- T. M. Chan, A minimalist implementation of an approximate nearest neighbor algorithm in fixed dimensions. unpublished manuscript. 2006.
- E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín, Searching in Metric Spaces. ACM Comput. Surveys, 33, 2001, 273-321.
- A. Gionis, P. Indyk, R. Motwani. Similarity search in high dimensions via hashing. Proc. 25th VLDB Conf., 1999, 518-529.
- S. Har-Peled. A replacement for Voronoi diagrams of near linear size. Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., 2001, 94–103.
- P. Indyk, and R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality. Proc. 30th Symp. on Theory of Comput., 1998, 604-613
- H. W Jensen, *Realistic Image Synthesis Using Photon Mapping*. A.K. Peters, 2001

| D.1.1.       |               |                      |                             |             |
|--------------|---------------|----------------------|-----------------------------|-------------|
|              |               |                      |                             |             |
|              |               |                      |                             | 00000       |
| Introduction | Structureless | Distance Enumeration | ANN via Polytope Membership | Conclusions |

Bibliography

- R. Krauthgamer and J. R. Lee, The black-box complexity of nearest neighbor search. *Theoret. Comput. Sci.*, 348, 2005, 129–366.
- D. G. Lowe, Object recognition from local scale-invariant features. Proc. Int. Conf. on Computer Vision, 2, 1999, 1150–1157.
- D. G. Lowe, Distinctive image features from scale-invariant keypoints Int. J. of Computer Vision, 60, 2004, 91-110.
- M. L. Mico, J. Oncina, and E. Vidal, A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. *Pattern Recognition Letters*, 15, 1994, 9–17