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Proximity Searching

Proximity searching:
A set of related geometric retrieval problems that involve finding the
objects close to a given query object.

Given an n-element set P of points in a metric space. Will assume that
the space is a vector space of low-dimension with a Minkowski norm.

@ Nearest neighbor searching: Given a query point g, find the closest
point of P to g

@ (Bounded) Range searching: Given a bounded query range Q,
count/report the points of PN Q
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Proximity Searching: Variants

Variations and issues:

@ Nearest-Neighbor Searching:

k-nearest neighbors

high dimensions (avoid exponential dependencies in dimension)
exploit properties of metric spaces (e.g., doubling dimension)
space-time tradeoffs

non-metric distances (e.g., Bregman Divergence)

@ Range Searching:
e range emptiness
@ more space-time tradeoffs
e semigroup properties (integral: x + y, idempotent: max(x,y))
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Proximity Searching: Applications

Applications:

@ Pattern recognition and classification
@ Object recognition in images (SIFT descriptors [Lowe 1999, 2004])
o Content-based retrieval:

e Shape matching

o Image retrieval

o Document retrieval

o Biometric identification (face/fingerprint/voice recognition)
Clustering and phylogeny

Data compression (vector quantization)

Physical simulation (collision detection and response)

Computer graphics: photon mapping and point-based modeling

...and many more
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The problem that launched a thousand data structures

@ 2-dimensions
e Voronoi diagram + point location

Low dimensional vector spaces
e grids, kd-trees, quadtrees, R-trees, ...and variants
o approximate Voronoi diagrams (AVD) [Har-Peled 2001, Arya et al.
2009]
@ High dimensional vector spaces
o locality sensitive hashing (LSH) [Gionis et al. 1999, Andoni and
Indyk, 2008]
Metric spaces
o metric trees and ring separator trees [Indyk and Motwani 1998,
Krauthgamer and Lee 2005] (...and variants)
o pivot-based methods (AESA, LAESA, and others) [Brin 1995]
[Chavéz et al. 2001]



Introduction
[e]e]e]e] }

Overview

@ The Structureless Structure
@ Enumerating Distances
@ ANN via Polytope Membership
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The Structureless Structure

@ “Constant factors” can play a big role in query times. For example,
in O(log n + (1/€)9) the term (1/€) is dominant

o Constant factors are often hidden by the memory model

@ Tree-based data structures (if naively implemented) have notoriously
poor memory access patterns
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Morton Order

Morton Order

o Consider a point set P, lying within the unit hypercube [0, 1)¢

@ For each p=(p1,...,pd) € RY, assume its coordinates are given
w-bit binary values p; = (0.bj1 ... bj,w)

@ Map p to an integer by shuffling the bits of its coordinates,

O’(p) = b1’1 500 bd,1|b1,2 000 bd72| 0G0 |b1’w 000 bd,w

@ This is called the Morton order or Z order.
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Linear Quadtree

Linear Quadtree

@ Sort P by Morton order
@ Store the points in an array (or any 1-dimensional index)

0000 | 0010 | 1000 | 1010
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Linear Quadtree — Easy Shuffling

Chan’s Shuffle Trick [Chan 2002]

Compare Morton codes without bit manipulation, just exclusive-or!

// tests whether |log, x| < |log, v
f(x,y) { return (x > y ? false : x < (x @ y)) }

// test whether o(p) < o(q)
compare(p, q) {
i+ 1
for j<2,...,d do
if (F(pi © qi,p @ q;)) i < J
return p; < q;
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A Minimalist Approach to Nearest Neighbor Searching

Chan [Chan 2006] showed that it is possible to use a Morton-sorted array
(no additional information) to answer approximate nearest neighbor
queries

@ Apply a random shift to the origin

o Query time is O(log n + (1/¢)?) in expectation

@ Space is O(n), in fact, it is an in-place algorithm

@ Preprocessing time is O(nlog n)

e Easily made dynamic (e.g., store in a skip list)

The program is absurdly short — less than 60 lines of C!

Competitive with ANN (my kd-tree implementation) in low dimensions
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Overview

@ The Structureless Structure
@ Enumerating Distances

@ ANN via Polytope Membership
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Distance Enumeration

Motivations:

@ Object-recognition: Want a sufficiently large number of high quality
features [Lowe 1999]

@ Global illumination: Want to collect a sufficiently large number of
sampled photons near a point [Jensen 2001]

Want the k nearest neighbors of g, but want to pick k on the fly
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Distance Enumeration

Distance Enumerator:
@ Visit the points P in increasing order of distance from a point g
o Let MN(qg) = (m1,...,m,), where pr, is g's kth nearest neighbor

o Generate the elements of I(q) efficiently, one at a time

(¢,e)-Enumerator

After preprocessing P, given a query point g, produces a generator for a
M’(q) such that:
@ Successive elements of ’(q) generated rapidly, e.g., O(log n) time

@ For 1 < k <n, a(l+¢) approximation to g's k-th nearest neighbor
appears among the first ¢ - k elements of I’
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Priority Search

Build a kd-tree T for P

For each node u, let C(u) be the cell associated with u

(]

Priority Search:

o Store the root u of T in a priority queue based on dist(q, C(u))
o Repeat until queue is empty:

@ Extract closest node u from the queue
o If uis a leaf then output the associate point
o Otherwise, enqueue u's two children

o A (c,e)-distance enumerator for c = O(1/e%) [Arya et al. 1998]
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Priority Search
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Priority Search
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Enhancing Robustness

Generate multiple “randomized” trees [Silpa-Anan and Hartley, 2008]
Select splitting axis at random (after PCA)

Rotate the points randomly: O(d?n)

Project the points through a random hyperplane: O(dn)

Generate m such trees and enumerate ¢ points from each

Total time O(c - mlog n)
Cluster-based method [Muja and Lowe 2009]

@ Preprocessing:

o Perform k-means clustering for some k (depending on dimension)
e Partition points into subtrees based on these clusters
o Recurse

@ Enumerate by visiting subtrees in order of distance of cluster center
to query point
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Overview
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@ Enumerating Distances
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Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess q
P to answer membership queries:

Given a point q, is g € P?

@ Assume that dimension d is a constant and P is
given as intersection of n halfspaces
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Approximate Polytope Membership Queries

Approximate Version

@ An approximation parameter € is given
(at preprocessing time)
@ Assume the polytope has diameter 1
o If the query point’s distance from P’s boundary:

e > g: answer must be correct
o < e: either answer is acceptable
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Approximate Polytope Membership Queries

Approximate Version

@ An approximation parameter € is given
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Split-Reduce

Preprocess:

@ Input P, €, and desired query time ¢t
@ @ <+ unit hypercube
@ Split-Reduce(Q)
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Split-Reduce

@ Input P, €, and desired query time ¢t

@ @ <+ unit hypercube
@ Split-Reduce( Q)

Split-Reduce(Q)
@ Find an e-approximation of @ N P

@ If at most t facets, then @ stores them

@ Otherwise, subdivide @ and recurse
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Split-Reduce

@ Input P, €, and desired query time ¢t

K @ @ <+ unit hypercube
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Split-Reduce

@ Input P, €, and desired query time ¢t

K @ @ <+ unit hypercube

@ Split-Reduce( Q)

Split-Reduce(Q)
@ Find an e-approximation of @ N P

@ If at most t facets, then @ stores them

@ Otherwise, subdivide @ and recurse
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Approximate Nearest Neighbor (ANN) Searching

Approximate nearest neighbor searching can
be reduced to approximate polytope
membership:

o Lift: By lifting, we can reduce nearest
neighbor search to ray shooting to a
polytope

@ Separate: Partition space into roughly
O(n) cells such that all nearest
neighbors of each cell are of similar
distance (AVD)
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@ Arya, et al. [2009] showed that
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Conclusions

Next steps on the quest?
@ Better analyses of the performance of
methods on realistic data sets

@ Emphasis on general/flexibile methods
(distance enumeration)

@ More repositories of good test data

@ How to explore/visualize/analyze the
structure of multi-dimensional data sets
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